

РЕЛЕ МИКРОПРОЦЕССОРНОЕ МР741 ЗАЩИТЫ И АВТОМАТИКИ ВВОДА, ОТХОДЯЩЕЙ ЛИНИИ, СЕКЦИОННОГО ВЫКЛЮЧАТЕЛЯ СО СВОБОДНО ПРОГРАММИРУЕМОЙ ЛОГИКОЙ

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

ПШИЖ 148.00.00.00.003 РЭ

Редакция 6.04 от 16.09.2021

БЕЛАРУСЬ

220101, г. Минск, ул. Плеханова, 105а, факс +375173780905, +375173798656 www.bemn.by, upr@bemn.by

ОКП РБ 31.20.31.500

MKC 29.130.10

СОДЕРЖАНИЕ

В	ВЕДЕНИЕ	6
1	НАЗНАЧЕНИЕ ИЗДЕЛИЯ	6
2	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	8
	ОПИСАНИЕ УСТРОЙСТВА	
	3.1 Устройство и работа изделия	12
	3.2 Программное обеспечение (ПО)	
	ПАРАМЕТРЫ ИЗМЕРЕНИЙ	15
5	КОНТРОЛЬ И УПРАВЛЕНИЕ ВЫКЛЮЧАТЕЛЕМ	16
	5.1. Контроль положения выключателя	18
	5.2. Определение момента включения/отключения выключателя	
	5.3. Выдача команд управления выключателем	18
	5.4 Аварийное отключение выключателя	
	5.5 Функция контроля цепей включения и отключения выключателя	20
	6.1 Определение направления	
	6.2 Токовые защиты	
	6.2.1 Направленная защита от повышения тока	21
	6.2.2 Направленная защита от повышения тока нулевой	
	последовательности	27
	6.2.3 Направленная защита от повышения тока обратной последовательности	30
	6.2.4 Защита от повышения суммарного тока высших гармоник нулевой	
	последовательности	33
	6.2.5 Защита от обрыва провода	
	6.3 Защиты по напряжению	
	6.3.1 Защита от повышения напряжения	
	6.3.2 Защита от понижения напряжения	
	6.3.3 Защита от повышения напряжения нулевой последовательности	39
	6.3.4 Защита от повышения напряжения обратной последовательности	
	6.4. Защиты по частоте	
	6.4.1 Защита от повышения частоты	43
	6.4.2 Защита от понижения частоты	
	6.5 Автоматика	
	6.5.1 Автоматическое повторное включение (АПВ)	
	6.5.2 Функция УРОВЗ (совместная реализация устройства резервирования отказа	
	выключателя УРОВ и логической защиты шин ЛЗШ)	49
	6.5.3 Устройство автоматического включения резерва (АВР)	
	6.5.4 Внешние защиты	
	6.6 Определение места повреждения	
	6.7 Определяемая пользователем логика	
	6.7.1 Общие положения	
	6.7.2 Разъёмы	
	6.7.3 Логический элемент «И»	
	6.7.4 Логический элемент «ИЛИ»	
	6.7.5 Логический элемент «Исключающее ИЛИ»	
	6.7.6 Логический элемент «HE»	
	6.7.7 RS- и SR-триггеры	
	6.7.8 Таймеры	
	6.7.9 Мультиплексор	
_	6.7.10 Текстовый блок	
1	РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ	
	7.1 Органы управления и индикации	
	7.2 Структура меню	
	7.3 Просмотр текущих значений измеренных величин	
	7.4 Сброс индикации	72

	7.5 Журналы	72
	7.5.1 Просмотр журнала аварий	72
	7.5.2 Просмотр журнала системы	
	7.5.3 Меню статистика	
	7.5.4 Сброс журналов	77
	7.6 Просмотр журнала ресурса выключателя	
	7.7 Диагностика	
	7.8 Конфигурирование системы	
	7.8.1 Подменю «ПАРАМЕТРЫ ИЗМЕРЕНИЙ»	82
	7.8.2 Подменю «ВХОДНЫЕ СИГНАЛЫ»	
	7.8.3 Подменю «ПАРАМЕТРЫ ВЫКЛЮЧАТЕЛЯ»	86
	7.8.4 Подменю «ПАРАМЕТРЫ УПРАВЛЕНИЯ»	87
	7.8.5 Подменю «ПАРАМЕТРЫ ЗАЩИТ»	
	7.8.6 Подменю «ПАРАМЕТРЫ АВТОМАТИКИ»	
	7.8.7 Подменю «СИГНАЛ НЕИСПРАВНОСТЬ»	
	7.8.8 Подменю «ВЫХОДНЫЕ СИГНАЛЫ»	
	7.8.9 Подменю «ПАРАМЕТРЫ СИСТЕМЫ»	
	7.8.10 Параметры осциллографа	
	7.8.11 Параметры логики	
	7.9 Конфигурация устройства с использованием локального интерфейса	
8	РУКОВОДСТВО ПО ПРОТОКОЛУ СВЯЗИ "МР-СЕТЬ"	
Ū	8.1 Организация локальной сети	
	8.2 Коммуникационный порт	
	8.3 Протокол " MP-СЕТЬ "	
	8.3.1 Общее описание	
	8.3.2 Организация обмена	
	8.3.3 Режим передачи	
	8.3.4 Содержание адресного поля.	
	8.3.5 Содержание поля функции.	
	8.3.6 Содержание поля данных	
	8.3.7 Содержание поля контрольной суммы	
	8.4 Структура данных	
	8.5 Функции "МР-СЕТЬ"	
	8.5.1 Функция 1 или 2	
	8.5.2 Функция 5	
	8.5.3 Функция 3 или 4	
	8.5.4 Функция 6	
	8.5.5 Функция 15	
	8.5.6 Функция 16	
	8.6 Описание страниц памяти данных	
	8.7 Группа уставок и версия	
	8.8 Дата и время	
	8.9 База данных дискретных сигналов	
	8.10 База данных аналоговых сигналов	
	8.11 База данных ресурса выключателя	
	8.12 Формат журнала системы	
	8.13 Формат журнала аварий	
	8.14 Формат уставок	
	8.15 Формат осциллограммы	
10	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	172
	1 РЕКОМЕНДАЦИИ ПО РАСЧЁТУ УСТАВОК И ПО ОРГАНИЗАЦИИ АВТОМАТИКИ	- -
	ЕЛЕ МИКРОПРОЦЕССОРНЫХ СЕРИИ 700	175
	11.1 Рекомендации по расчету уставок максимальной токовой защиты линий	

11.1.1 Расчёт токов срабатывания ненаправленной максимальной токовой защить	اد
(MT3)	
11.1.2 Расчёт токов срабатывания направленной МТЗМТЗ	177
11.1.3 Выбор времени срабатывания и времятоковой характеристики МТЗ	177
11.1.4 Расчёт угла максимальной чувствительности	
11.1.5 MT3 с пуском по напряжению	180
11.1.6 Ускорение максимальной защиты при включении выключателя	181
11.2 Рекомендации по расчету уставок токовых отсечек	181
11.2.1 Расчет тока срабатывания селективной токовой отсечки без выдержки	
времени	
11.2.2 Отсечка с выдержкой времени на линиях электропередачи	183
11.3 Пример расчета уставок для направленной МТЗ с зависимой времятоковой	
характеристикой	184
11.4 Примеры расчета рабочих уставок ступенчатых токовых защит линий от	
междуфазных КЗ	
11.5 Рекомендации по расчёту уставок защиты от замыканий на землю	
11.5.1 Требования к защитам от замыканий на землю в сетях 6-35 кВ	191
11.5.2 Расчёт уставок направленной защиты от замыканий на землю в	
сетях 6-35 кВ	193
11.6 Рекомендации по расчёту уставок защиты от повышения тока обратной	
последовательности	
11.7 Рекомендации по расчёту уставок защиты от обрыва провода	
11.8 Рекомендации по организации автоматического повторного включения	
11.9 Рекомендации по организации автоматического включения	
резерва (АВР)	
11.10 Рекомендации по организации защиты шин	202
11.10.1 Организация дуговой защиты шин	
11.10.2 Организация логической защиты шин (ЛЗШ)	203
11.11 Рекомендации по организации устройства резервирования отказа	
выключателя (УРОВ)	204
11.12 Рекомендации по организации УРОВЗ (совместной реализации УРОВ и ЛЗШ)	
12 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	206
··	207
Приложение 1 – Габаритные и присоединительные размеры, размеры окна под	007
установку устройства и вид задней панели	207
Приложение 2 – Схемы внешних присоединений МР741	
Приложение 3 – Таблицы КАРТА ЗАКАЗА НА РЕЛЕ МИКРОПРОЦЕССОРНОЕ МР741 ЗАЩИТЫ И АВТОМАТИ	
	KVI
ВВОДА, ОТХОДЯЩЕЙ ЛИНИИ, СЕКЦИОННОГО ВЫКЛЮЧАТЕЛЯ СО СВОБОДНО	225
ПРОГРАММИРУЕМОЙ ЛОГИКОЙ	225

ВВЕДЕНИЕ

Настоящий документ предназначен для изучения микропроцессорного реле МР741.

В состав данного документа включено: описание устройства и принципа работы микропроцессорного реле MP741, технические характеристики, а также сведения, необходимые для правильной эксплуатации и руководство по протоколу связи «MP-CETЬ» (MODBUS).

Содержание этого документа распространяется на все модификации изделия.

В связи с постоянно проводимыми работами, направленными на усовершенствование микропроцессорного реле МР741, предприятие-изготовитель оставляет за собой право внесения изменений, не отражённых в настоящем руководстве по эксплуатации, не ухудшающих параметров изделия и не влияющих на безопасную работу устройства (для их уточнения следует обращаться к разработчику).

1 НАЗНАЧЕНИЕ ИЗДЕЛИЯ

Микропроцессорное реле МР741 (далее – МР741) предназначено для защиты и автоматики:

- кабельных и воздушных линий электропередачи напряжением 6-35 кВ с двухсторонним питанием;
- выключателей питающих и отходящих присоединений распределительных устройств 6-110 кВ;
 - трансформаторов 6-110 кВ (в качестве резервной защиты трансформаторов).

МР741 является современным цифровым устройством защиты, управления и противоаварийной автоматики, и представляет собой комбинированное многофункциональное устройство, объединяющее различные функции защиты, измерения, контроля, местного и дистанционного управления.

Использование в устройстве MP741 современной аналого-цифровой и микропроцессорной элементной базы обеспечивает высокую точность измерений и постоянство характеристик, что позволяет существенно повысить чувствительность и быстродействие защит, а также уменьшить ступени селективности.

Функции, выполняемые микропроцессорным реле (МР):

- направленная/ненаправленная защита от повышения тока с пуском по напряжению (код ANSI 67/50/51/51V; количество ступеней защиты 4);
- направленная/ненаправленная защита от повышения тока (мощности) нулевой последовательности с пуском по напряжению (код ANSI – 67N/51N/32P; количество ступеней защиты – 4;
- направленная/ненаправленная защита от повышения тока (мощности) обратной последовательности с пуском по напряжению (код ANSI 46; количество ступеней защиты 2);
- защита от повышения суммарного тока нулевой последовательности высших гармоник с пуском по напряжению (количество ступеней защиты 1);
 - защита от обрыва провода I2/I1 (код ANSI 46BC; количество ступеней защиты 1);
- защита от понижения напряжения с уставкой на возврат (код ANSI 27; количество ступеней защиты 2);
- защита от повышения напряжения с уставкой на возврат (код ANSI 59; количество ступеней защиты 2);
- защита от повышения напряжения нулевой последовательности с уставкой на возврат (код ANSI 59N; количество ступеней защиты 2);
- защита от повышения напряжения обратной последовательности с уставкой на возврат (код ANSI 47; количество ступеней защиты 2);
- защита от снижения частоты с уставкой на возврат (код ANSI 81U-R; количество ступеней защиты 2;

- защита от повышения частоты с уставкой на возврат (код ANSI 810; количество ступеней защиты 2);
 - определение места повреждения;
 - четырёхкратное AПВ выключателя защищаемого присоединения (код ANSI 79);
 - контроль состояния выключателя с УРОВ (УРОВЗ), код ANSI 50BF;
 - ABP;
 - блокирующая логика;
 - восемь внешних защит;
 - восемь входных логических сигналов по логике «И» или «ИЛИ»;
 - восемь выходных логических сигналов по логике «ИЛИ»;
- определяемая пользователем логика функциональные блоки: входы, выходы, записи в журнал, логические элементы И, ИЛИ, исключающее ИЛИ, НЕ, триггер, таймер, мультиплексор, текстовый блок;
- индикация действующих (текущих) значений токов и напряжений защищаемого присоединения, частоты;
- местное и дистанционное управление выключателем, переключение режима управления;
 - блокирование от многократных включений;
 - контроль исправности цепей измерения напряжения;
- задание внутренней конфигурации (ввод защит и автоматики, выбор защитных характеристик, количества ступеней защиты, программирование логики и т.д.) программным способом;
- местный и дистанционный ввод, хранение и отображение уставок защит и автоматики;
- регистрация аварийных параметров защищаемого присоединения (действующих значений тока, напряжения и типа повреждения) и срабатывания измерительных органов;
- регистрация изменения сигналов на дискретных входах (состояния выключателя присоединения, цепей дистанционного управления и внешних защит) и команд управления, поступающих по каналу связи;
 - учет количества отключений выключателя;
- получение дискретных сигналов управления и блокировок, выдача команд управления, аварийной и предупредительной сигнализации;
 - обмен информацией с верхним уровнем (АСУ ТП);
 - непрерывная самодиагностика аппаратной и программной части

Устройство имеет две группы уставок, называемые «основная» и «резервная», которые могут быть выбраны при программировании через клавиатуру, персональный компьютер или сеть связи. Установленная группа уставок, может быть индицирована на ЖКИ. Независимо от сделанного выбора, устройство может принудительно использовать резервные уставки. Это может быть выполнено через сеть или дискретный вход, специально сконфигурированный для этой цели. Когда сигнал сбрасывается, то предварительно выбранная группа уставок устанавливается снова.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 2.1

Таблица 2.1			
Параметр	Значение		
Аналоговые входы:			
Цепи измерения тока			
■ количество;	4		
 диапазон входных токов: 			
∘ рабочий;	от 0,1Ін до 2Ін;*		
о аварийный в фазах;	от 2Ін до 40Ін;		
о нулевой			
последовательности In;	от 0 до 5Ін;		
термическая устойчивость:			
о длительно;	41H;		
о в течение 2 с;	40lH;		
о в течение 1 с	100lH		
• потребляемая мощность	при номинальном токе не более 0,25 B·A;		
Цепи напряжения ■ количество;	4;		
количество,входное напряжение:	Τ,		
о номинальное в фазах (Uн);	100 В эф.;		
 рабочее (Up); 	до 256 В эф.;		
термическая устойчивость:			
о длительно;	260 В эф.;		
о в течение 10 с;	300 В эф.;		
• потребляемая мощность	при номинальном напряжении не более 0,25 B·A;		
Частота	50 Cu:		
номинальное значение;рабочий лиапазон	50 Гц; 40-60 Гц		
 рабочий диапазон Дискретные входы: 	то оо г ц		
та покретные входы. ■ количество;	18 (16 программируемых, изолированых между со-		
ROJIJI IOOTBO,	то (то программируемых, изолированых между со- бой);		
номинальное напряжение;	~230 B (~110; =48; =24 B - по заказу);		
 напряжение срабатывания; 	0,6 - 0,7 UBX. HOM;		
 коэффициент возврата; 	K _B ≥ 0,95		
 потребляемый ток в устано- 			
вившемся режиме;	0,8-1,4 мА;		
импульс режекции;	Iреж ≥ 20 мА; tреж≥ 10 мс;		
 задержка по входу, не более; 	20 мс;		
 минимальная длительность 	7		
сигнала (антидребезговая за-	7 мс		
держка)			
Релейные выходы: • количество;	16 (13 программируемых);		
количество,номинальное напряжение;	250 В;		
номинальное напряжение,номинальный ток нагрузки;	8 A;		
 коммутационная способность 	до 10 А на время 1,0 с		
в цепи управления выключа-	до 30 А на время 0,2 с		
телем, L/R≤40 мс	до 40 А на время 0,03 с		
 размыкающая способность 	24 B, 8 A; 48 B, 1 A;		
для постоянного тока;	110 B, 0,4 A; 220 B, 0,3 A;		
 количество коммутаций на 	10,000:		
контакт: нагруженный; ненагруженный	10 000; 100 000;		
Электропитание:	100 000,		
• номинальное напряжение пи-	~230 B; =220 B; (<u>~</u> 110 B; =24; =48 – по заказу);		
тания;	, , , , ,		
рабочий диапазон питания:			
о напряжение переменного	от 100 до 253 В;		
тока;	400 000 D /		
о напряжение постоянного	от 100 до 300 В (допустимый уровень пульсаций		
тока; ■ потребляемая мощность:	20 %);		
потреоляемая мощность.в нормальном режиме;	не более 7 B·A;		
о при срабатывании защит	не более 10 В.А		
о при оразатывании оащин	110 00/100 10 0/1		

8

Продолжение таблицы 2.1			
Параметр	Значение		
Интерфейс человеко-машинный:			
индикаторы светодиодные:			
о количество;	13;		
о свободно назначаемые;	8;		
клавиатура;	10 клавиш;		
дисплей	светодиодный, 2 строки по 16 символов		
Локальный интерфейс:	USB-2;		
■ скорость передачи данных	38400 бит/с, до версии 1.15 программного обеспечения (ПО); 115200 бит/с с версии 1.15 ПО		
Удаленный интерфейс: Вариант 1			
╹ ■ тип канала;	2-х проводная физическая линия;		
,	Один порт RS-485 (изолированный)		
 скорость передачи данных; 	1200/ 2400/ 4800/ 9600/ 19200/ 38400/ 57600/		
	115200 бит/с;		
 дальность связи по каналу; 	До 1000 м;		
■ протокол связи;	"MP-CETЬ" (MODBUS);		
,	//		
Вариант 2	Два порта RS-485 (изолированных); "MP-CETЬ" (MODBUS);		
Вариант 3 ■ протокол связи	Два оптических порта типа ST (100BASE - Fx); МЭК-61850;		
Вариант 4	The neutral Ethernet Tune D. LAF (400DACE TV).		
■ протокол связи	Два порта Ethernet типа RJ-45 (100BASE - Tx);		
·	MЭK-61850		
Осциллографирование:	0=0 == 20.		
Restricted codystitot parmit,	От 0 до 32;		
 длительность записи общая; число выборок на период: 	31744·n / (n+1) мс, где n - количество осциллограмм;		
more beleeper na nepried,	20;		
 число каналов; притоди мости содиси до орорий; 	8 аналоговых, 16 дискретных;		
 длительность записи до аварий; 	0-99% от общей длительности;		
• формат представления данных	беззнаковый 16 р. преобразование в формате		
	COMTRADE при помощи программной оболочки		
	«УниКон»		
Регистрация сообщений:			
журнал аварий;	32;		
журнал событий;	128;		
Показатели надежности:			
 средняя наработка на отказ 	100000 ч;		
 среднее время восстановления 	не более 1 ч;		
 полный срок службы 	не менее 20 лет;		
 поток ложных срабатываний 	не более 1·10 ⁻⁶		
устройства в год			
Рабочий диапазон температур окружаю-	Минус 25 +40°С		
щего воздуха			
Предельный рабочий диапазон темпера-	Минус 40 +70°С		
тур окружающего воздуха с сохранением			
функций защит			
Относительная влажность:	TO 05 % (TDM +250C M HAYO):**		
в рабочих условиях эксплуата-	до 95 % (при +25°С и ниже);**		
ции;	TO 09 9/ (TDM 1.250C M 1110)(2)		
 при транспортировании 	до 98 % (при +25°С и ниже)		

Продолжение таблицы 2.1

Параметр	Значение
Атмосферное давление	79,473 106,7 кПа
Номинальные рабочие значения механических внешних воздействующих факторов	по ГОСТ 17516.1-90 для группы механического исполнения М40 (соответствует по сейсмо-стойкости 9 баллам)
Устойчивость к механическим внешним	В соответствии с условиями транспортирова-
воздействующим факторам при транс-	ния «С» по
портировании	ГОСТ 23216-78
Габаритные размеры***	270×161×202 мм (с учётом ответной части
	разъёмов)
Macca	Не более 4 кг
Степень защиты, обеспечиваемая оболочкой (корпусом);	IP30 по ГОСТ 14254-2015;
степень защиты клеммных разъёмов	IP20 πο ΓΟCT 14254-2015

^{*} Iн – номинальный входной ток (номинальный вторичный ток от фазных трансформаторов тока), Iн=5 A (1 A)

Требования электромагнитной совместимости в соответствии с ГОСТ Р 51317.6.5 — 2006 (МЭК 61000-6-5) «Совместимость технических средств электромагнитная. Устойчивость к электромагнитным помехам технических средств, применяемых на электростанциях и подстанциях. Требования и методы испытаний» приведены в таблице 2.2.

Таблица 2.2

Параметр	Значение
Устойчивость к воздействию наносекундных импуль-	
сных помех в соответствии с требованиями СТБ	
MЭК 61000-4-4-2006 (МЭК 61000-4-4:2004):	
- для входных цепей питания;	4 кВ
- для остальных независимых цепей;	2 кВ
- критерий качества функционирования	"A"
Устойчивость к провалам и кратковременным прерыва-	
ниям напряжения сети электропитания в соответствии с	
требованиями СТБ МЭК 61000-4-11-2006	
(МЭК 61000-4-11:2004):	
а) уровень испытательного напряжения в % от номи-	
нального напряжения электропитания:	
1) для прерываний;	0 %;
2) для провалов;	40 %;
б) длительность провалов;	∆U 30% (20 мс);
	ΔU 60% (1 c);
в) прерываний;	∆U 50% (100 мс)
	ΔU 100% (1 c)
в) критерий качества функционирования	"A"

^{**} Не допускается конденсация влаги при эксплуатации микропроцессорных реле

^{***} Габаритные и присоединительные размеры приведены в приложении 1

Продолжение таблицы 2.2

Продолжение таблицы 2.2	
Параметр	Значение
Устойчивость к электростатическим разрядам в соот-	
ветствии с требованиями	
СТБ МЭК 61000-4-2-2006 (МЭК 61000-4-2:2001):	
- при контактном разряде;	6 кВ;
- при воздушном разряде;	8 kB;
- критерий качества функционирования	"A"
Устойчивость к воздействию микросекундных им-	
пульсных помех в сответствии с требованиями	
ГОСТ IEC 61000-4-5-2017 (МЭК 61000-4-5:2014):	(4 0 1 0 4) »P = · · · · · · · · · · · · · · · · · ·
- амплитуда напряжения испытательного импульса;	(4,0±0,4) кВ при подаче помехи
	по схеме «провод-земля»; (2,0±0,1) кВ при подаче помехи
	(2,0±0,1) кв при подаче помехи по схеме «провод-провод»;
- критерий качества функционирования	по схеме «провод-провод», "А"
Устойчивость к затухающему колебательному маг-	A
нитному полю по ГОСТ Р 50652-94:	
- степень жёсткости испытаний;	3;
- критерий качества функционирования	«A»
Устойчивость к воздействию повторяющихся колеба-	- W W
тельных затухающих помех частотой 0,1 и 1 МГц в со-	
ответствии с требованиями	
ГОСТ IEC 61000-4-12-2016:	
- амплитудное значение первого импульса испыта-	(2,5±0,25) кВ при подаче помехи
тельного напряжения;	по схеме «линия – земля»;
Teribriore frampristerium,	(1±0,1) кВ при подаче помехи по
	схеме «линия – линия»;
- критерий качества функционирования	"A"
Устойчивость к воздействию магнитного поля про-	/\
мышленной частоты в соответствии с требованиями	
FOCT IEC 61000-4-8-2013 (IEC 61000-4-8:2009):	
- напряжённость непрерывного магнитного поля по-	30 А/м;
стоянной интенсивности;	00 7 VIVI,
- критерий качества функционирования	"A"
Устойчивость к воздействию импульсного магнитного	
поля в соответствии с требованиями	
ГОСТ 30336-95:	
- максимальная напряжённость импульсного магнит-	300 А/м;
ного поля;	JOO A/NI,
- критерий качества функционирования	"A"
Устойчивость к воздействию радиочастотного элек-	Λ
тромагнитного поля в соответствии с требованиями	
СТБ IEC 61000-4-3-2009	
(IEC 61000-4-3:2008):	
- напряжённость излучаемого однородного электро-	10 В/м;
магнитного поля,	10 D/W,
- диапазон частот электромагнитного поля;	от 80 до 1000 МГц;
- критерий качества функционирования	"А"
Устойчивость к кондуктивным помехам, наведенным	/ \
радиочастотными электромагнитными полями, по	
СТБ IEC 61000-4-6-2009 (IEC 61000-4-6:2006):	
- степень жёсткости (испытательное напряжение);	3 (10 B);
,	3 (10 Б), от 150 кГц до 80 МГц;
- диапазон частот электромагнитного поля;	***
- критерий качества функционирования	«A»

11

Продолжение таблицы 2.2

Параметр	Значение
Устойчивость к колебательному затухающему маг-	
нитному полю, по ГОСТ ІЕС 61000-4-10-2014:	
- испытательный уровень;	30 А/м;
- критерий качества функционирования;	«A»;
- степень жесткости	Класс 4
Помехоустойчивость к колебаниям питающего сете-	
вого напряжения, по IEC 61000-4-17:2015:	
- пульсация напряжения электропитания	10%
Помехоустойчивость к падению напряжения, корот-	
ким замыканиям и изменению питающего постоянно-	
го напряжения, по IEC 61000-4-29:2000:	
- перерыв электропитания без изменения параметров	ΔU 30% - 0,1 сек;
	ΔU 60% - 0,1 сек;
	ΔU 100% - 0,05 сек

Сопротивление изоляции независимых внешних электрических цепей (кроме низковольтных цепей) относительно корпуса и между собой, измеренное мегаомметром постоянного тока с выходным напряжением 500 В, не менее 100 МОм.

Изоляция всех независимых электрических цепей устройства (кроме низковольтных цепей) относительно корпуса и между собой выдерживает в течение 1 мин действие испытательного напряжения 2 кВ практически синусоидальной формы частотой 50 Гц.

Изоляция всех независимых электрических цепей устройства (кроме цепей интерфейса USB, RS-485) относительно корпуса и между собой выдерживает без повреждений воздействие импульсного напряжения в соответствии с разделом 8 ГОСТ 30328-95 (максимальная амплитуда импульса 5 кВ).

Устройство по пожарной безопасности соответствует требованиям ГОСТ 12.1.004-91 и СТБ МЭК 60950-1-2003.

Устройство не предназначено для установки и эксплуатации во взрывоопасных и пожароопасных помещениях по ПУЭ ("Правила устройства электроустановок").

3 ОПИСАНИЕ УСТРОЙСТВА

3.1 Устройство и работа изделия

MP741 имеет модульную структуру (см. рисунок 3.1) и состоит из следующих модулей:

- модуль процессора (МП);
- модуль (ввода) сигналов аналоговых (МСА);
- модуль (ввода) сигналов дискретных (МСД);
- модуль питания и реле (МПР);

Все модули ввода-вывода имеют разъемы для связи с МП и блоком питания посредством кросс-платы.

Модули устанавливаются внутри корпуса МР741. Для подключения внешних цепей на всех модулях имеются клеммные колодки пружинного и винтового (для токовых входов) типа (по заказу все клеммы могут быть выполнены винтовыми).

Входные напряжения и токи на входах *МСА* преобразуются датчиками напряжения и тока и фильтруются аналоговыми фильтрами низких частот, отсекающими высшие гармоники во входном сигнале, а затем, передаются на МП.

МП: центральный процессор выполняет функции аналого-цифрового преобразования, вычисления и связи. При помощи 16-разрядного аналого-цифрового преобразователя аналоговые сигналы, поступающие от МСА, преобразуются в цифровой код и обрабатываются процессором. Получаемые в итоге данные определяют условия срабатывания защит.

Для предотвращения зависания процессора предусмотрен сторожевой таймер, перезагружающий систему в случае сбоя. Параметры журнала аварийных событий, конфигурация защит, уставки, пароль пользователя для входа в систему хранятся в энергонезависимом программируемом постоянном запоминающем устройстве (ППЗУ). Данные осциллографирования хранятся в энергонезависимом оперативном запоминащем устройстве (ОЗУ).

МП образует интерфейс между пользователем и устройством посредством клавиатуры, жидкокристаллического дисплея и светодиодных индикаторов. Индикаторы отображают состояние защищаемой линии, коммутационного аппарата и самого МР.

МСД позволяет MP741 получать сигналы от внешних устройств.

МПР предназначен для выдачи следующих сигналов: неисправности самого МР, об аварии в схему центральной сигнализации, а также различные запрограммированные сигналы защиты и автоматики.

МПР позволяет питать устройство, как от постоянного, так и переменного оперативного тока в широком диапазоне изменения питающего напряжения.

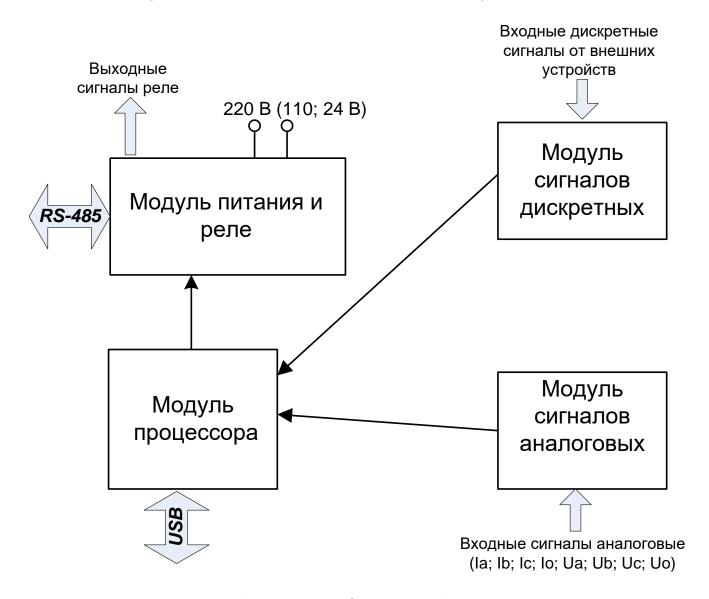


Рисунок 3.1 – Структура МР741

3.2 Программное обеспечение (ПО)

МР741 работает под управлением ОПЕРАЦИОННОЙ СИСТЕМЫ РЕАЛЬНОГО ВРЕМЕНИ (ОСРВ), обеспечивающей обработку программных задач в доступное время и в необходимом порядке очерёдности.

ПО включает в себя следующие задачи:

- задача обработки входных дискретных сигналов;
- задача цифровой фильтрации и осциллографирования;
- задача логики защит и автоматики;
- задача часов реального времени;
- задача реализации функций человеко-машинного интерфейса и самодиагностики:
 - задача ввода-вывода по последовательному интерфейсу;

Реализация уставок по времени для разных защит в программе осуществляется при помощи одноканального таймера и системы прерываний. ПО имеет встроенный механизм контроля собственного кода.

Настоящее руководство действительно с версиями ПО 1.15 - 1.17; 1.20; 1.21 и 2.00; 2.01; 2.02; 2.03; 2.04; 2.05s; 2.05st -3.01.

4 ПАРАМЕТРЫ ИЗМЕРЕНИЙ

Измерения в MP741 производятся по четырём каналам тока и четырём каналам напряжения. Первичные токи трансформаторов тока (ТТ) и коэффициенты трансформации трансформатора напряжения (ТН) задаются согласно таблице 4.1.

Таблица 4.1

	Наименование параметра	Значение
1	Диапазон первичного тока TT	0-3000 A*
		0-5000 A**
2	Диапазон первичного тока трансформатора тока нулевой	0-100 A*
	последовательности (ТТНП)	0-1000 A**
3	Диапазон уставок по коэффициенту трансформации ТН	0-128000
4	Диапазон уставок по коэффициенту трансформации транс-	
	форматора напряжения нулевой последовательности (ТННП)	0-128000
5	Дискретность уставок:	
	по току	1 A
	по коэффициенту трансформации	0,01; 10***
* в версии 1.12 ПО		
** с версии 1.14 ПО		
*** 0.01 в диапазоне от 0 до 128, 10 в диапазоне от 130 до 128000		

Номинальный первичный ток ТТНП рассчитывается:

$$IH = IH_2 \cdot \kappa_{TTHII}$$
,

где I_{H_2} - номинальный ток четвёртого измерительного токового входа (1 или 5 A);

 κ_{TTHII} - коэффициент трансформации трансформатора тока нулевой последовательности.

В меню «Параметры напряжения» задаётся напряжение, используемое токовыми защитами нулевой последовательности (функций пуска по напряжению и поляризации органа направления мощности):

- «Ua,Ub,Uc; Uo=U0» используется расчётное напряжение нулевой последователь-ности U0;
- **«Ua,Ub,Uc; Uo=Un»** используется **измеренное** по четвёртому (нулевому) каналу напряжения **Un**.

Отдельно для фазных и нулевого каналов напряжения можно задать внешние сигналы неисправности «НЕИСПРАВНОСТЬ ТН» и «НЕИСПРАВНОСТЬ ТННП» соответственно.

Напряжения считаются определёнными недостоверно:

- расчётные, нулевой и обратной последовательности, при всех фазных ниже 5 В или при появлении сигнала «НЕИСПРАВНОСТЬ ТН»;
- *фазное*, при его уровне ниже 5 В или при появлении сигнала «НЕИСПРАВНОСТЬ ТН»:
- *линейное*, при уровне обоих из составляющих его фазных ниже 5 В или при появлении сигнала «НЕИСПРАВНОСТЬ ТН»;
- *измеренное по нулевому каналу*, при появлении сигнала «НЕИСПРАВНОСТЬ ТННП».

При недостоверном определении напряжения защита, измерительный орган которой использует это напряжение, блокируется.

Частота считается определённой недостоверно при любом из следующих условий:

- при всех фазных напряжениях ниже 10 В;
- при появлении сигнала «НЕИСПРАВНОСТЬ ТН»;
- частоте вне диапазона 40-60 Гц.

При недостоверном определении частоты защиты по частоте блокируются.

Коэффициент возврата для токовых измерительных органов (ИО) максимального действия принят равным 0,95, для напряженческих ИО максимального действия - 0,98, а для напряженческих ИО минимального действия - 1,02, для защит частоты возврат 0,05 Гц при неиспользовании уставок возврата.

5 КОНТРОЛЬ И УПРАВЛЕНИЕ ВЫКЛЮЧАТЕЛЕМ

Для осуществления функций контроля положения, изменения состояния выключателя используются внешние сигналы с блок-контактов выключателя. Для реализации управления выключателем предусмотрены следующие возможности подачи команд (рисунки 5.1а и 5.1б):

- от встроенных кнопок «ВКЛ/ОТКЛ»;
- от внешнего ключа управления;
- от внешней схемы (например, ABP, телемеханика);
- по интерфейсу связи.

Управление от встроенных кнопок и по интерфейсу связи может быть запрещено. Управление от внешнего ключа и от внешней схемы может быть введено на «РАЗРЕШЕНО» или «КОНТРОЛЬ». Сигналы с ключа или от внешней схемы действуют:

- в режиме «РАЗРЕШЕНО» на соответствующие реле МР741 «ВКЛЮЧИТЬ» или «ОТКЛЮЧИТЬ»;
- в режиме «КОНТРОЛЬ» действие не выполняется. Сигналы используются только в логике работы автоматики.

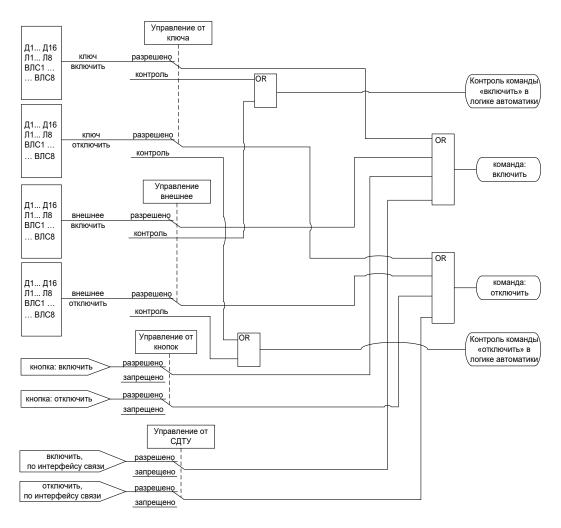


Рисунок 5.1а – Логика выдачи команд управления до версии ПО 1.20 (в изделиях с версиями ПО, начинающимися с 1) и до версии 2.03 (в изделиях с версиями ПО, начинающимися с 2)

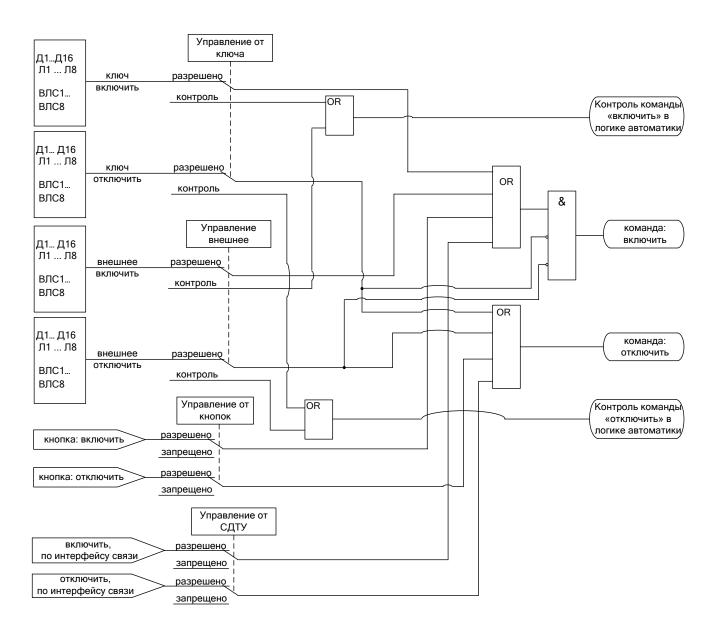


Рисунок 5.16 – Логика выдачи команд управления с версии ПО 1.20 (в МР741 с версиями ПО, начинающимися с 1) и с версии ПО 2.03 (в МР741 с версиями ПО, начинающимися с 2)

При одновременной подаче команд на включение и отключение приоритетной является команда на отключение.

По факту включения выключателя осуществляется блокировка АПВ на время Тб (см. п. 6.5.1) и ускорение токовых защит на время «ДЛИТ-ТЬ УСКОР.» (Тдл. уск.). Также в алгоритмах управления выключателем используются следующие величины:

- Тимп время выдачи импульса на включение или отключение выключателя;
- «ВРЕМЯ УРОВ» (Туров) время отключения выключателя, используется в логике УРОВ (УРОВЗ).
- «ТОК УРОВ» (Іуров) минимальный ток, при котором разрешено действие УРОВ. При неиспользовании функции УРОВ параметры Іуров и Туров применяются при формировании сигнала неисправности «Отказ выключателя» и соответствующей записи в журнале системы (см. п 5.4).

Внимание! Значение Іуров должно быть меньше наименьшей уставки токовых защит и ЛЗШ.

Внимание! Значение Іуров должно быть выше 0, иначе каждое аварийное отключение выключателя будет приводить к формированию неисправности «Отказ выключателя».

5.1. Контроль положения выключателя

Сигналы с блок-контактов выключателя («сост. включено» и «сост. отключено») распознаются согласно алгоритму, показанному на рисунке 5.2. Если блок-контакт «включено» разомкнут, а блок-контакт «отключено» замкнут, то вырабатывается сигнал «положение: отключён». В случае, когда блок-контакт «включено» замкнут, а «отключено» разомкнут, вырабатывается сигнал «положение: включён». Если оба сигнала имеют одинаковое значение больше времени Тимп, то вырабатывается сигнал «неисправность выключателя».

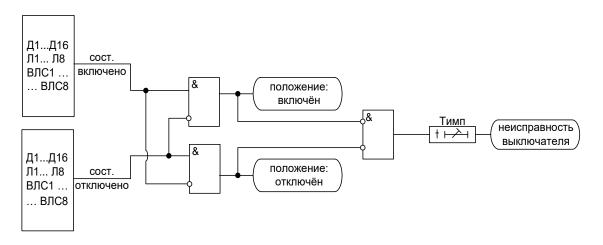


Рисунок 5.2 – Логика определения положения выключателя.

5.2. Определение момента включения/отключения выключателя

Определение момента включения/отключения выключателя (сигналы «выключатель включён», «выключатель отключён») осуществляется по изменению положения блокконтактов согласно алгоритму, показанному на рисунке 5.3. По включению выключателя осуществляется ускорение токовых защит и блокировка АПВ.

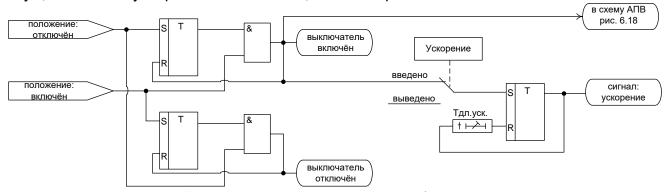


Рисунок 5.3 – Логика определения включения/отключения выключателя

5.3. Выдача команд управления выключателем

Сигнал отключить выключатель выдаётся непосредственно при появлении команды на отключение на время Тимп (рисунок 5.4). Сигнал включить выключатель создаётся на время Тимп после выдачи команды на включение при выполнении следующих условий (рисунок 5.4):

- состояние выключателя отключён;
- нет команды отключить выключатель;

- отсутствуют блокировка включения выключателя и сигналы о неисправностях выключателя.

Сигналы включить/отключить выключателя управляют работой жёстко назначенных реле, а также могут быть заведены на любые программируемые реле.

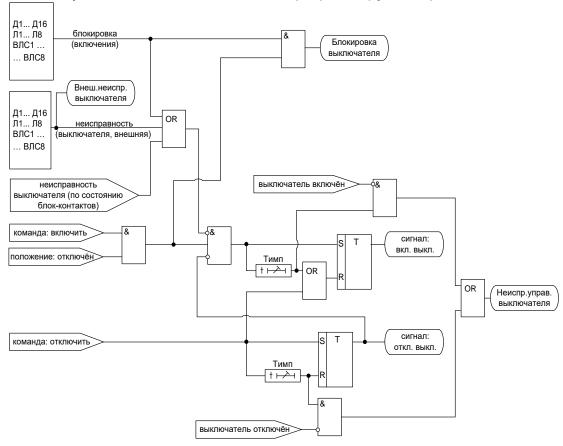


Рисунок 5.4 – Логика выдачи сигналов на включение/отключение выключателя.

5.4 Аварийное отключение выключателя

Сигнал аварийное отключение формируется при срабатывании защит введённых в режиме «ОТКЛЮЧЕНИЕ» или «ОСЦИЛЛОГРАФ». При появлении сигнала «аварийное отключение»:

- 1. Выдаётся команда «отключить» (рисунок 5.5).
- 2. При наличии тока выше уставки Іуров в течение времени Туров вырабатывается сигнал «отказ выключателя» и при разрешённом УРОВ по сработавшей ступени вырабатывается сигнал «УРОВ».
- 3. При разрешённом АПВ по сработавшей ступени по факту отключения выключателя формируется сигнал «пуск АПВ». В случае появления сигнала «отказ выключателя» происходит запрет АПВ.

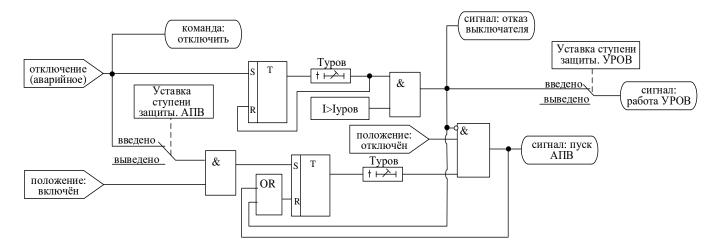


Рисунок 5.5 – Логика работы МР741 при аварийном отключении.

5.5 Функция контроля цепей включения и отключения выключателя

Данная функция может быть применена в случае, если реле «Включить выключатель» и «Отключить выключатель» МР741 действуют непосредственно на катушки включения и отключения выключателя. МР741 имеет два жестко назначенных дискретных входа (К1 и К2), подключаемых параллельно реле «Включить выключатель» и «Отключить выключатель». Данные входы предназначены для контроля целостности цепей включения и отключения. Логическая схема контроля цепей управления представлена на рисунке 5.6. Контроль целостности цепи включения производится при отключённом выключателе, контроль целостности цепи отключения — при включённом выключателе.

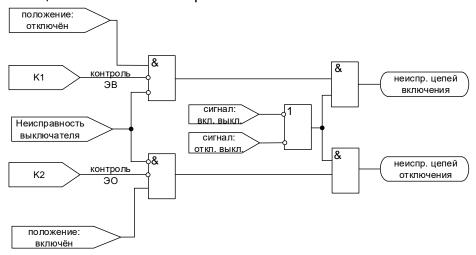


Рисунок 5.6 – Логическая схема контроля цепей управления

Внимание! В цепях контроля целостности протекает измерительный ток 1 мА.

6 ОПИСАНИЕ ФУНКЦИЙ ЗАЩИТ И АВТОМАТИКИ

Устройство имеет две идентичные группы уставок: основную и резервную (для функций защит токовых, напряжения и частоты). Действующая группа задаётся в уставках конфигурации. Переключение между группами может осуществляться по внешнему сигналу, а также по каналу связи.

6.1 Определение направления

Учёт конфигурации сети для направленных защит производится путём задания угла максимальной чувствительности (см. рисунки 6.1, 6.6, 6.8), отдельно для защит:

- от повышения тока (I>, I>>, I>>>);
- от повышения расчётного тока нулевой последовательности (10>, 10>>);
- от повышения тока обратной последовательности (I2>, I2>>);
- от повышения измеренного по нулевому каналу тока (In>, In>>);.

Угол максимальной чувствительности задаётся согласно таблице 6.1.

Таблица 6.1

	Значение	
	1 Диапазон уставок по углу максимальной чувствительности:	0-360°
1	2 Дискретность уставок по углу максимальной чувствительности:	1°

Направление считается недостоверно определённым:

- при поляризующем токе меньше 0,1Ін;
- поляризующей мощности меньше 0,5 Вт;
- попадании в зону нечувствительности (см. рисунки 6.1, 6.6, 6.8);
- при поляризующем напряжении ниже 5 В.

При снижении поляризующего напряжения ниже 5 В ступени направленных защит в течение трёх секунд работают по памяти.

6.2 Токовые защиты

6.2.1 Направленная защита от повышения тока

Защита от повышения тока может иметь 4 ступени (I>, I>>, I>>>, I>>>>) с независимой или зависимой времятоковой характеристикой. Условием срабатывания защиты может задаваться режим превышения уставки по току одной или всех трех фаз.

Каждая ступень может быть сконфигурирована как направленная или ненаправленная, в случае направленного режима задаётся направление срабатывания «от шин» или «к шинам».

Определение направления мощности производится по 90°-градусной схеме, т.е. для построения измерительного органа ступени используются следующие сочетания токов и напряжений: Іа и Ubc, Іb и Uca, Іс и Uab. Зона срабатывания защиты показана на рисунке 6.1. При недостоверном определении направления (п. 6.1) ступень может работать как ненаправленная или блокироваться, что выбирается в настройках.

Каждая ступень может иметь функцию пуска по минимальному напряжению. В качестве пускающего напряжения используется линейное напряжение: для Ia - Uab, для Ib - Ubc, для Ic - Uca. При недостоверном определении напряжения (раздел 4) ступень блокируется.

Защита может работать в режимах «Одна фаза» и «Все фазы». В режиме «Одна фаза» для срабатывания ступени необходимо превышение тока хотя бы в одной фазе, при введённом пуске по напряжению - выполнение условия пуска по этой фазе, при введённом направленном режиме — выполнение условия направленности по этой фазе. В режиме «Все фазы» для срабатывания ступени необходимо превышение тока во всех трёх фазах, при введённом пуске по напряжению — выполнения условий пуска по всем трём фазам, при введённом направленном режиме — выполнение условий направленности по всем трём фазам.

Каждая ступень имеет возможность блокировки от внешнего дискретного сигнала (пуск от инверсного сигнала). Наличие или отсутствие блокировки задается в уставках конфигурации.

В МР741 предусмотрена возможность ускорения. Переключение в ускоренный режим происходит по включению выключателя. В ускоренном режиме срабатывание ступени безусловно происходит по уставке «УСКОРЕНИЕ» (уставка Туск, рисунок 6.4).

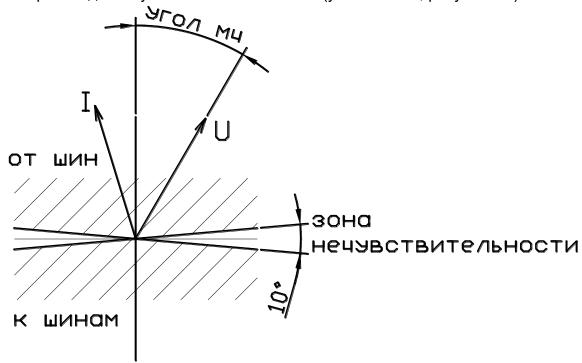


Рисунок 6.1 – Зона срабатывания направленной защиты

Количество ступеней направленной защиты от повышения тока задается в уставках конфигурации. Особенности расчета угла максимальной чувствительности приведены в рекомендациях по расчету уставок (п. 11.1.4).

Режимы работы защиты:

«ВЫВЕДЕНА» - защита выведена из работы;

«ВВЕДЕНА» - защита введена в работу с контролированием уставки по времени. Отключения выключателя и действия на сигнализацию не происходит.

«СИГНАЛИЗАЦИЯ» - как при «ВВЕДЕНА», но с действием в схему сигнализации и записью в журнал аварий;

«ОТКЛЮЧЕНИЕ» - то же, что и при режиме «СИГНАЛИЗАЦИЯ», плюс действие на отключение выключателя.

Наличие функций «АПВ», «УРОВ», «УСКОРЕНИЕ», «АВР», «ОСЦИЛЛОГРАФ» по каждой ступени задаётся в уставках конфигурации.

Внимание! Не рекомендуется вводить одновременно АПВ и АВР.

Примечание 1. При использовании ступени защиты с пуском по напряжению следует учитывать то, что при снижении напряжения пуска ниже 5 В ступень защиты блокируется, т.е. вблизи места установки защита имеет «мёртвую» зону. Эту зону рекомендуется защищать токовой отсечкой без пуска по напряжению.

Примечание 2. Для правильного определения направления необходимо задавать уставку по времени не менее 10 мс.

Все ступени с независимой времятоковой характеристикой функционально идентичны и имеют характеристики, указанные в таблице 6.2.

Таблица 6.2

	Наименование параметра	Значение
1	Диапазон уставок по току:	0–40Ін
2	Диапазон уставок по напряжению:	0-256 B
3	Диапазон уставок по времени:	0-3000 c*
4	Дискретность уставок:	
	по току	0,01Ін
	по напряжению	0,01 B
	по времени	0,01 c (0,1 c)**
5	Основная погрешность срабатывания по току:	
	в диапазоне 0,2 – 2Iн, приведенная к 2Iн	±1,5 %
	в диапазоне свыше 2Ін относительная	±2,5 %
6	Относительная погрешность срабатывания по напряжению:	±2 %
7	Основная погрешность срабатывания по времени:	±10 мс

*Примечание – здесь и далее по тексту, кроме специально оговорённых случаев, диапазон уставок по времени дается без учета собственного времени работы измерительного органа (30 - 50 мс). Выдержка времени защит определяется как сумма параметров «уставка по времени» и «собственное время работы измерительного органа».

**Примечание – здесь и далее по тексту дискретность уставок по времени в диапазоне до 300с – 0,01с, выше 300с – 0,1с.

При выборе защиты с зависимой от тока уставкой по времени, время срабатывания t_{CP} , мс, определяется формулой

$$t_{CP} = \frac{k}{\frac{I_{BX}}{I_{CP}}} \cdot 10, \quad ***$$
 (6.1)

где k – коэффициент, характеризующий вид зависимой характеристики;

 $I_{\scriptscriptstyle BX}$ - входной фазный ток устройства;

 $I_{\it CP}$ - величина тока уставки зависимой от тока ступени направленной защиты от повышения тока.

*** Примечание – Формула (6.1) действительна только при Івх > Іср.

Диапазон уставок коэффициента k от 0 до 4000, дискретность установки 1.

На рисунке 6.2 представлены графики зависимых характеристик с различными значениями коэффициента k . Для выбора уставки коэффициента k рекомендуется:

- 1) если защита устанавливается вместо реле или плавкой вставки с известной характеристикой, то значение k может быть определено путем совмещения данной характеристики с представленными на графике;
- 2) если защита устанавливается на последовательных участках ЛЭП (рисунок 6.3), то выбор характеристики осуществляется по принципу селективной работы защит смежных участков с учётом направления.

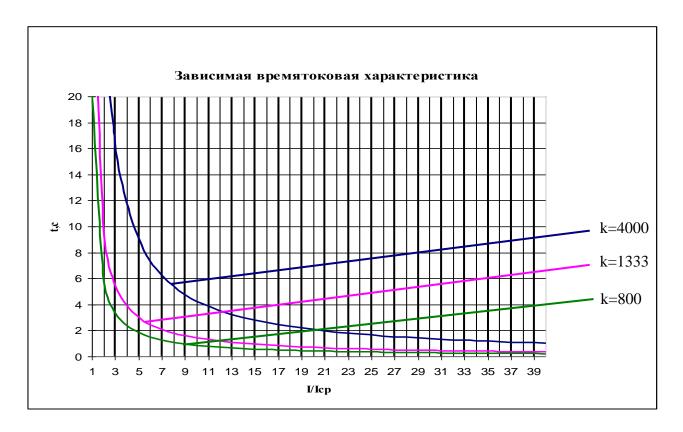


Рисунок 6.2 – Графики зависимой характеристики

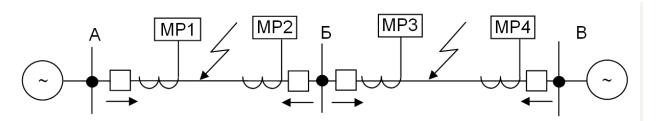


Рисунок 6.3 – К выбору зависимой характеристики смежных участков

Зависимая характеристика защиты MP1 выбирается таким образом, чтобы время ее срабатывания было на ступень селективности больше времени срабатывания защиты MP3. Таким образом, согласно рисунку 6.3 ступень зависимой характеристика защиты участка MP1 должна располагаться выше ступени зависимой характеристики защиты участка MP3.

Функциональная схема ступени направленной МТЗ приведена на рисунках 6.4, 6.5. Логика работы направленной МТЗ, проиллюстрированная на рисунках 6.4, 6.5 реализована программно.

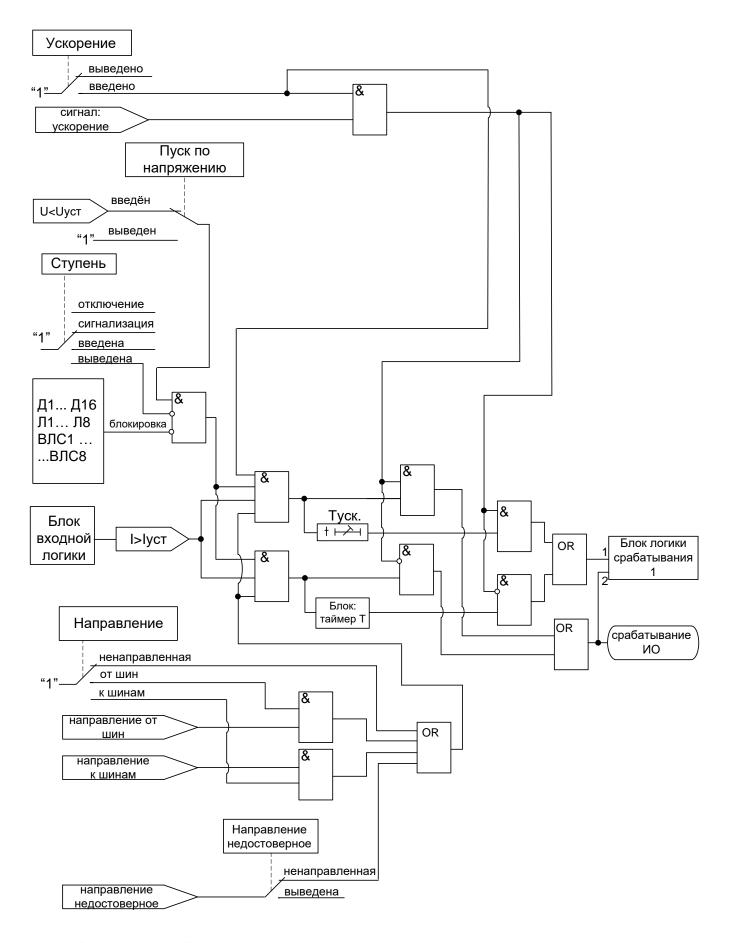
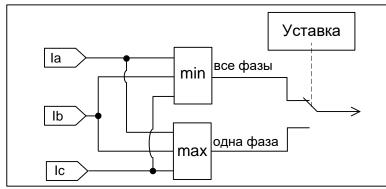
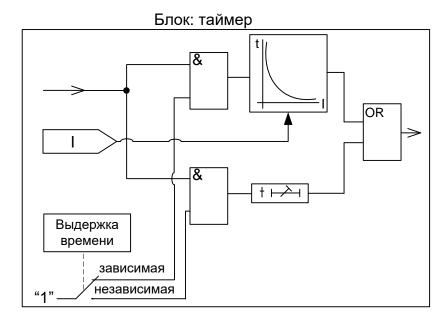




Рисунок 6.4 – Логическая схема направленной защиты от повышения тока

Блок-схема входной логики

Блок-схема логики срабатывания 1 (общая для всех защит кроме токовых нулевой последовательности)

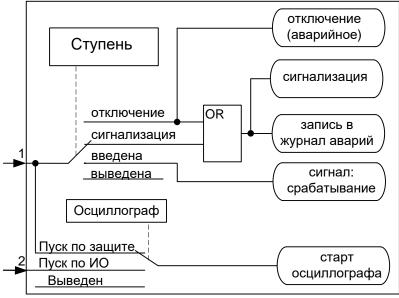


Рисунок 6.5 – Логическая схема направленной защиты от повышения тока (блоки)

6.2.2 Направленная защита от повышения тока нулевой последовательности

Защита может иметь четыре ступени, две (I0>, I0>>) - использующие расчётный ток нулевой последовательности, две (In>, In>>) - измеренный ток по нулевому (четвёртому) каналу тока. Каждая из ступеней может срабатывать по превышению уставки током нулевой последовательности или активной мощностью нулевой последовательности.

Каждая ступень может быть сконфигурирована как направленная или ненаправленная, в случае направленного режима задаётся направление срабатывания «от шин» или «к шинам». Зона срабатывания направленной защиты показана на рисунке 6.6. При недостоверном определении направления (п. 6.1) ступень может работать как ненаправленная или блокироваться, что выбирается в настройках.

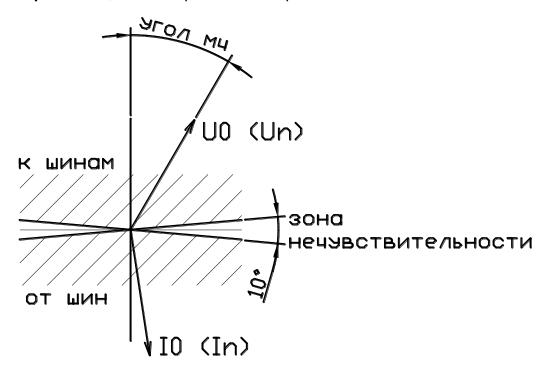


Рисунок 6.6 – Зона срабатывания направленной защиты от повышения тока нулевой последовательности.

Каждая ступень может иметь функцию пуска по максимальному напряжению нулевой последовательности. При недостоверном определении напряжения (п. 4) ступень блокируется.

Ступени защиты имеют независимую времятоковую характеристику, возможность блокировки от внешнего дискретного сигнала (пуск от инверсного сигнала).

Для каждой ступени предусмотрена возможность ускорения. Переключение в ускоренный режим происходит по включению выключателя. В ускоренном режиме срабатывание ступени безусловно происходит по уставке «УСКОРЕНИЕ» (уставка Т2, рисунок 6.7).

Количество ступеней направленной защиты от повышения тока нулевой последовательности задается в уставках конфигурации.

Режимы работы защиты:

«ВЫВЕДЕНА» - защита выведена из работы;

«ВВЕДЕНА» - защита введена в работу с контролированием уставки по времени. Отключения выключателя и действия на сигнализацию не происходит.

«СИГНАЛИЗАЦИЯ» - как при «ВВЕДЕНА», но с действием в схему сигнализации и записью в журнал аварий;

«ОТКЛЮЧЕНИЕ» - то же, что и при режиме «СИГНАЛИЗАЦИЯ», плюс действие на отключение выключателя.

Наличие функций «АПВ», «УРОВ», «УСКОРЕНИЕ», «АВР», «ОСЦИЛЛОГРАФ» по каждой ступени задаётся в уставках конфигурации.

Внимание! Не рекомендуется вводить одновременно АПВ и АВР.

Примечание. Для правильного определения направления необходимо задавать уставку по времени не менее 10 мс.

Все ступени функционально идентичны и имеют характеристики, указанные в таблице 6.3.

Таблица 6.3

	Наименование параметра	Значение
1	Диапазон уставок по расчётному току lo:	0 – 40Ін
	Диапазон уставок по измеренному току In:	0 — 5Ін
2	Диапазон уставок для расчётной активной мощности	0,1 - 40PH;
	нулевой последовательности:	Рн = Up·Iн
	Диапазон уставок для измеренной активной мощности	0,1 – 5Рн
	нулевой последовательности:	
3	Диапазон уставок по напряжению:	0 – 256 B
4	Диапазон уставок по времени:	0 - 3000 c
5	Дискретность уставок:	
	по току	0,01Ін
	по мощности	0,01Рн
	по напряжению	0,01 B
	по времени	0,01 c (0,1 c)
6	Относительная погрешность срабатывания:	
	- по измеренному току In;	±2,0 %;
	- по расчётному току lo (в диапазоне свыше 2lн)	±2,5 %
	Приведенная к 2Iн погрешность срабатывания по расчётному току Io (в диапазоне от 0,1 до 2,0Iн)	±1,5 %
7	Основная погрешность срабатывания по мощности:	±3 %
8	Относительная погрешность срабатывания по напряжению:	±2 %
9	Основная погрешность срабатывания по времени:	±10 мс

Функциональная схема ступени направленной защиты от повышения тока нулевой последовательности приведена на рисунке 6.7а. Блок, показанный на рисунках 6.7а и 6.7б, реализован программно.

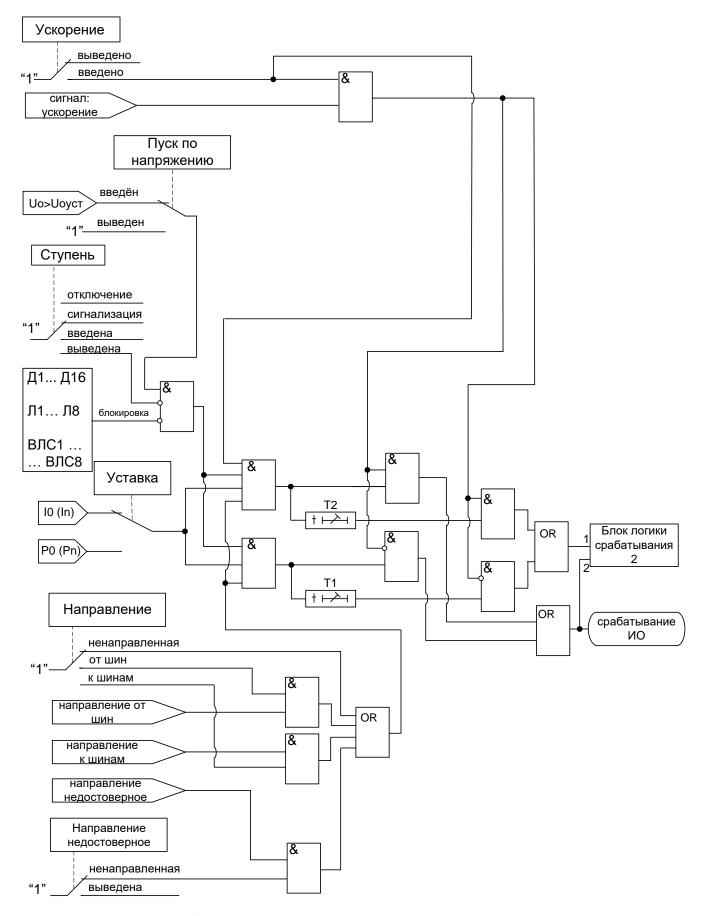


Рисунок 6.7а – Блок направленной защиты от повышения тока нулевой последовательности.

Блок логики срабатывания 2 (общий для всех токовых защит нулевой последовательности)

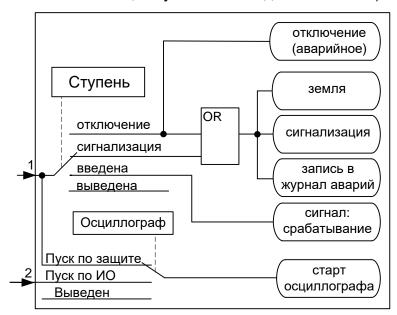


Рисунок 6.7б – Блок-схема логики срабатывания токовых защит нулевой последовательности.

6.2.3 Направленная защита от повышения тока обратной последовательности

Двухступенчатая токовая защита обратной последовательности (I2>, I2>>) работает по расчетным значениям токов обратной последовательности I2 или активной мощности обратной последовательности P2.

Каждая ступень может быть сконфигурирована как направленная или ненаправленная, в случае направленного режима задаётся направление срабатывания «от шин» или «к шинам». Зона срабатывания направленной защиты показана на рисунке 6.8. При недостоверном определении направления (п. 6.1) ступень может работать как ненаправленная или блокироваться, что выбирается в настройках.

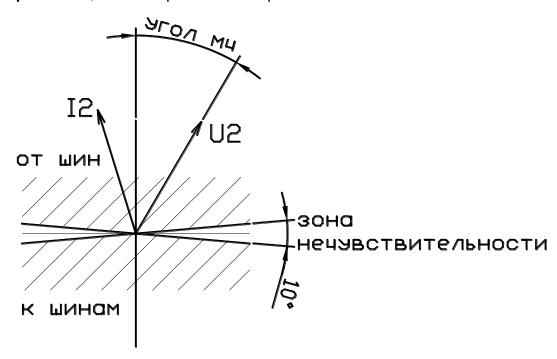


Рисунок 6.8 – Зона срабатывания направленной защиты I2.

Каждая ступень может иметь функцию пуска по максимальному напряжению обратной последовательности. При недостоверном определении напряжения (п. 4) ступень блокируется.

Ступени защиты имеют независимую времятоковую характеристику, возможность блокировки от внешнего дискретного сигнала (пуск от инверсного сигнала).

Для каждой ступени предусмотрена возможность ускорения. Переключение в ускоренный режим происходит по включению выключателя. В ускоренном режиме срабатывание ступени безусловно происходит по уставке «УСКОРЕНИЕ» (уставка Т2, рисунок 6.9).

Количество ступеней направленной защиты от повышения тока обратной последовательности задается в уставках конфигурации.

Режимы работы защиты:

«ВЫВЕДЕНА» - защита выведена из работы;

«ВВЕДЕНА» - защита введена в работу с контролированием уставки по времени. Отключения выключателя и действия на сигнализацию не происходит.

«СИГНАЛИЗАЦИЯ» - как при «ВВЕДЕНА», но с действием в схему сигнализации и записью в журнал аварий;

«ОТКЛЮЧЕНИЕ» - то же, что и при режиме «СИГНАЛИЗАЦИЯ», плюс действие на отключение выключателя.

Наличие функций «АПВ», «УРОВ», «УСКОРЕНИЕ», «АВР», «ОСЦИЛЛОГРАФ» по каждой ступени задаётся в уставках конфигурации.

Внимание! Не рекомендуется вводить одновременно АПВ и АВР.

Примечание. Для правильного определения направления необходимо задавать уставку по времени не менее 10 мс.

Обе ступени функционально идентичны и имеют характеристики, указанные в таблице 6.4.

Таблица 6.4

	Наименование параметра	Значение
1	Диапазон уставок по току для всех ступеней:	0–40Ін
2	Диапазон уставок по напряжению U2 для всех ступеней:	0-256 B
3	Диапазон уставок по активной мощности для всех ступеней:	0,1–40Рн
4	Диапазон уставок по времени:	0-3000 с
5	Дискретность уставок:	
	по току	0,01Ін
	по напряжению	0,01 B
	по мощности	0,01Рн
	по времени	0,01 c (0,1 c)
6	Основная погрешность срабатывания по току:	
	в диап. 0,2 – 2 Ін, приведенная к 2Ін	±1,5%
	в диап. 2,1 – 40 lн относительная	±2,5%
7	Относительная погрешность срабатывания по напряжению:	±2%
8	Основная погрешность срабатывания по мощности:	
	в диап. 0,2 – 2 Рн, приведенная к 2Рн	±3%
	в диап. 2,1 – 40 Рн относительная	±5%
9	Основная погрешность срабатывания по времени:	±10 мс

Функциональная схема ступени направленной защиты от повышения тока обратной последовательности приведена на рисунке 6.9. Блок, показанный на рисунке 6.9, реализован программно.

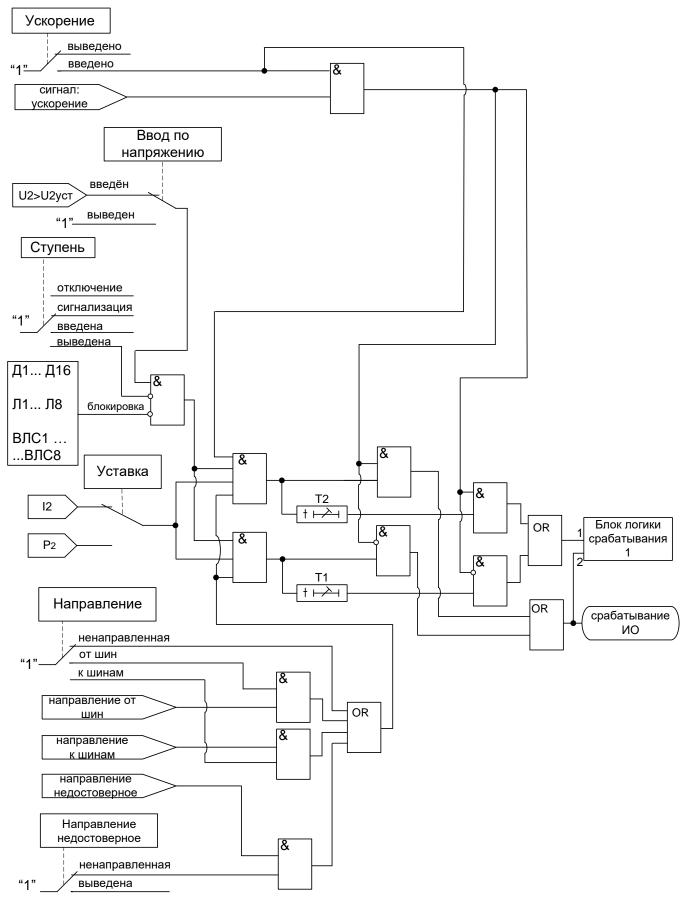


Рисунок 6.9 – Блок направленной защиты от повышения тока обратной последовательности

6.2.4 Защита от повышения суммарного тока высших гармоник нулевой последовательности

Защита имеет одну ступень Iг>. Защита срабатывает по измеренному суммарному току 9-й и 11-ой гармоник тока нулевой последовательности (4-го канала тока). Ступень защиты имеет независимую времятоковую характеристику, возможность блокировки от внешнего дискретного сигнала (пуск от инверсного сигнала).

Защита может иметь функцию пуска по максимальному напряжению нулевой последовательности. При недостоверном определении напряжения (п. 4) ступень блокируется.

Для ступени предусмотрена возможность ускорения. Переключение в ускоренный режим происходит по включению выключателя. В ускоренном режиме срабатывание ступени безусловно происходит по уставке «УСКОРЕНИЕ» (уставка Т2, рисунок 6.10).

Режимы работы защиты:

«ВЫВЕДЕНА» - защита выведена из работы;

«ВВЕДЕНА» - защита введена в работу с контролированием уставки по времени. Отключения выключателя и действия на сигнализацию не происходит.

«СИГНАЛИЗАЦИЯ» - как при «ВВЕДЕНА», но с действием в схему сигнализации и записью в журнал аварий;

«ОТКЛЮЧЕНИЕ» - то же, что и при режиме «СИГНАЛИЗАЦИЯ», плюс действие на отключение выключателя.

Наличие функций «АПВ», «УРОВ», «УСКОРЕНИЕ», «АВР», «ОСЦИЛЛОГРАФ» по каждой ступени задаётся в уставках конфигурации.

Внимание! Не рекомендуется вводить одновременно АПВ и АВР.

Характеристики защиты показаны в таблице 6.5.

Таблица 6.5

	Наименование параметра	Значение
1	Диапазон уставок по току для измеренного суммарного то-	0–5Ін
	ка Іг	
2	Диапазон уставок по времени	0-3000 с
3	Диапазон уставок по напряжению U0:	0-256 B
4	Дискретность уставок:	
	по току	0,01Ін
	по времени	0,01 c (0,1 c)
	по напряжению	0,01 B
5	Относительная погрешность срабатывания по току Іг	±2,5 %
6	Основная погрешность срабатывания по времени:	±10 мс
7	Относительная погрешность срабатывания по напряжению:	±2 %

Функциональная схема ступени защиты от повышения суммарного тока высших гармоник нулевой последовательности приведена на рисунке 6.10. Блок, показанный на рисунке 6.10, реализован программно.

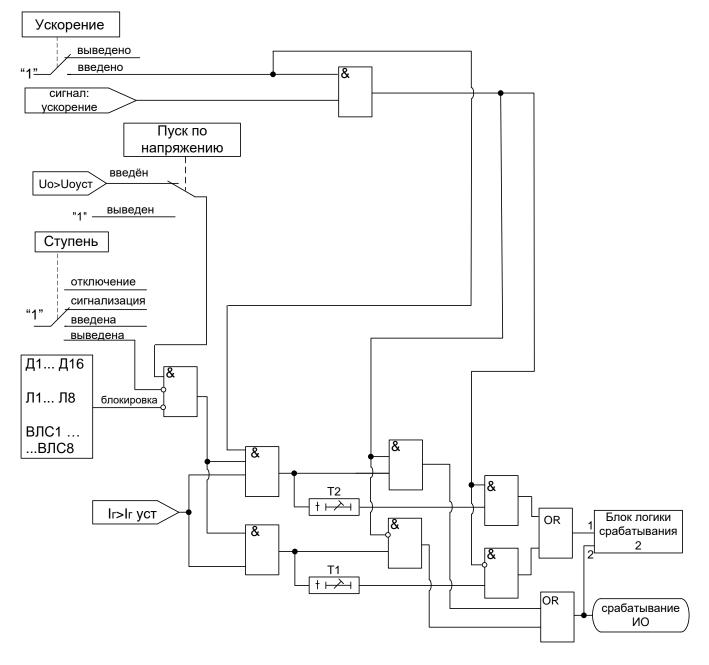


Рисунок 6.10 – Блок защиты от повышения суммарного тока высших гармоник нулевой последовательности.

6.2.5 Защита от обрыва провода

Одноступенчатая защита от обрыва провода (I2/I1>) работает по расчетному значению отношения тока обратной последовательности I2 к току прямой последовательности I1. Защита имеет независимую времятоковую характеристику, возможность блокировки от внешнего дискретного сигнала (пуск от инверсного сигнала).

Работа ступени разрешается при уровне тока обратной последовательности выше 0,05lн.

Режимы работы защиты:

«ВЫВЕДЕНА» - защита выведена из работы;

«ВВЕДЕНА» - защита введена в работу с контролированием уставки по времени. Отключения выключателя и действия на сигнализацию не происходит.

«СИГНАЛИЗАЦИЯ» - как при «ВВЕДЕНА», но с действием в схему сигнализации и записью в журнал аварий;

«ОТКЛЮЧЕНИЕ» - то же, что и при режиме «СИГНАЛИЗАЦИЯ», плюс действие на отключение выключателя.

Наличие функций «АПВ», «УРОВ», «АВР», «ОСЦИЛЛОГРАФ» по каждой ступени задаётся в уставках конфигурации.

Внимание! Не рекомендуется вводить одновременно АПВ и АВР.

Характеристики защиты показаны в таблице 6.6.

Таблица 6.6

таолица о.о				
	Наименование параметра	Значение		
1	Диапазон уставок I2/I1:	0-100 %		
2	Диапазон уставок по времени:	0-3000 c *		
3	Дискретность уставок:			
	12/11	1%		
	по времени	0,01 c (0,1 c)		
4	Основная погрешность срабатывания I2/I1:	±2,5%		
5	Основная погрешность срабатывания по времени:	±10 мс		
* Для корректной работы защиты от обрыва провода в переходных				

процессах необходимо выставлять уставку по времени не менее 20 мс

Функциональная схема ступени защиты от обрыва провода приведена на рисунке 6.11. Блок, показанный на рисунке 6.11, реализован программно.

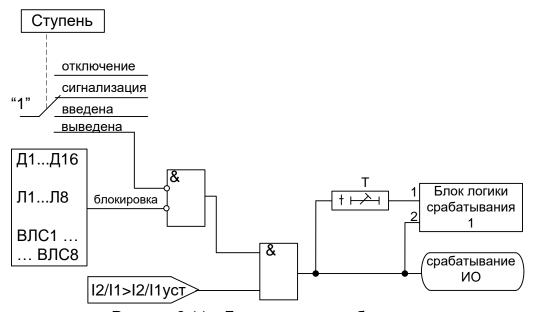


Рисунок 6.11 – Блок защиты от обрыва провода

6.3 Защиты по напряжению

6.3.1 Защита от повышения напряжения

Защита от повышения напряжения может иметь две ступени (U>, U>>) с независимой уставкой по времени. В соответствии с заданной конфигурацией защита может срабатывать по превышению уставки:

- любым одним фазным напряжением («ОДНО ФАЗНОЕ»);
- всеми фазными напряжениями («ВСЕ ФАЗНЫЕ»);
- любым одним линейным («ОДНО ЛИНЕЙНОЕ»);
- всеми линейными («ВСЕ ЛИНЕЙНЫЕ»)
- напряжением, измеренным по четвёртому каналу напряжения («Un»).

Все ступени могут иметь функцию возврата измерительного органа защиты по уставке, автоматическое повторное включение по возврату и блокировку ступени от внешнего сигнала. С версии 1.14 ПО в случае срабатывания ступени с возвратом при отсутствии фактора срабатывания ступень может быть сброшена (опция «СБРОС СТУПЕНИ») до появления сигнала возврата по операциям с выключателем (от ключа, от внешнего управления, от кнопок, от СДТУ).

При недостоверном определении напряжения (п. 4) ступень блокируется.

Режимы работы защиты:

«ВЫВЕДЕНА» - защита выведена из работы;

«ВВЕДЕНА» - защита введена в работу с контролированием уставки по времени. Отключения выключателя и действия на сигнализацию не происходит.

«СИГНАЛИЗАЦИЯ» - как при «ВВЕДЕНА», но с действием в схему сигнализации и записью в журнал аварий;

«ОТКЛЮЧЕНИЕ» - то же, что и при режиме «СИГНАЛИЗАЦИЯ», плюс действие на отключение выключателя.

Наличие функций «АПВ», «УРОВ», «АВР», «ОСЦИЛЛОГРАФ», «СБРОС СТУПЕНИ» по каждой ступени задаётся в уставках конфигурации.

Внимание! Не рекомендуется вводить одновременно АПВ и АВР.

Условия срабатывания ступени защиты:

- введена соответствующая ступень защиты от повышения напряжения;
- выбран режим «ВВЕДЕНА» или выше (т.е. «СИГНАЛИЗАЦИЯ», «ОТКЛЮЧЕНИЕ»);
 - отсутствие сигнала блокировки защиты.

При превышении заданным напряжением уставки выдается сигнал на измерительный орган (ИО) и запускается уставка по времени Тср. Если уровень напряжения выше уставки сохраняется по истечении времени Тср, создаётся сигнал срабатывания защиты.

Возврат защиты происходит:

- а) если задана уставка возврата, при снижении напряжения ниже уставки возврата на время равное Твз;
- б) если уставка возврата не введена, то по снижению напряжения ниже основной уставки с учётом коэффициента возврата.

В случае ввода функции возврата по уставке возможна реализация автоматического повторного включения по возврату. ВНИМАНИЕ! АПВ по возврату («АПВ ВЗ») возможно только при разрешенном АПВ.

Функциональная схема ступени защиты от повышения напряжения приведена на рисунке 6.12. Блок, показанный на рисунке 6.12, реализован программно.

Обе ступени функционально идентичны и имеют характеристики, указанные в таблице 6.7.

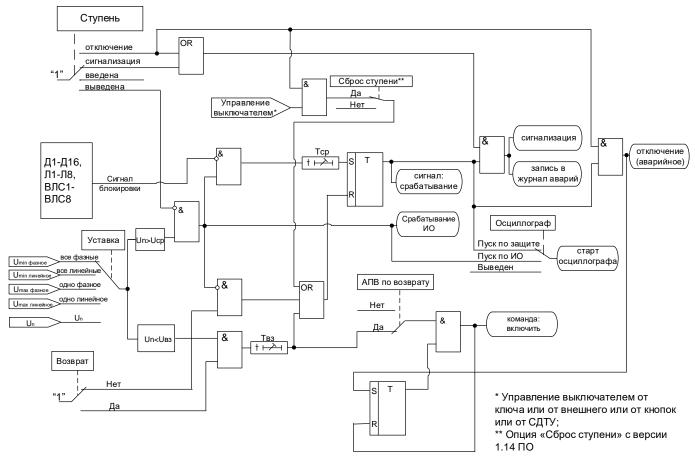


Рисунок 6.12 – Блок защиты от повышения напряжения.

Таблица 6.7

	Наименование параметра	Значение
1	Диапазон уставок по напряжению	0-256 B
2	Диапазон уставок по времени	0-3000 c
3	Дискретность уставок:	
	по напряжению	0,01 B
	по времени	0,01c (0,1c)
4	Коэффициент возврата	0,95
5	Относительная погрешность срабатывания по напряжению	±2 %
6	Основная погрешность срабатывания по времени:	±10 мс

6.3.2 Защита от понижения напряжения

Защита от понижения напряжения имеет две ступени (U<, U<<) с независимой уставкой по времени. В соответствии с заданной конфигурацией защита может срабатывать по снижению ниже уставки:

- любого одного фазного напряжения («ОДНО ФАЗНОЕ»);
- всех фазных напряжений («ВСЕ ФАЗНЫЕ»);
- любого одного линейного («ОДНО ЛИНЕЙНОЕ»);
- всех линейных («ВСЕ ЛИНЕЙНЫЕ»)
- напряжения, измеренным по четвёртому каналу напряжения («Un»).

Все ступени могут иметь функцию возврата измерительного органа защиты по уставке, автоматическое повторное включение по возврату и блокировки ступени от внешнего сигнала. С версии 1.14 ПО в случае срабатывания ступени с возвратом при отсутствии фактора срабатывания ступень может быть сброшена (опция «СБРОС СТУПЕНИ») до появления сигнала возврата по операциям с выключателем (от ключа, от внешнего управления, от кнопок, от СДТУ).

При неисправности ТН ступени U<, U<<, введенные на «ОДНО ФАЗНОЕ» или «ВСЕ ФАЗНЫЕ», «ОДНО ЛИНЕЙНОЕ», или «ВСЕ ЛИНЕЙНЫЕ» блокируются.

При неисправности ТННП ступени U<, U<<, введенные на Un блокируются.

В устройстве имеется возможность ввода блокировки ступеней U<, U<< при напряжении меньше 5 В.

Режимы работы защиты:

«ВЫВЕДЕНА» - защита выведена из работы;

«ВВЕДЕНА» - защита введена в работу с контролированием уставки по времени. Отключения выключателя и действия на сигнализацию не происходит.

«СИГНАЛИЗАЦИЯ» - как при «ВВЕДЕНА», но с действием в схему сигнализации и записью в журнал аварий;

«ОТКЛЮЧЕНИЕ» - то же, что и при режиме «СИГНАЛИЗАЦИЯ», плюс действие на отключение выключателя;

Наличие функций «АПВ», «УРОВ», «АВР», «ОСЦИЛЛОГРАФ», «СБРОС СТУПЕНИ» по каждой ступени задаётся в уставках конфигурации.

Внимание! Не рекомендуется вводить одновременно АПВ и АВР.

Условия срабатывания ступени защиты:

- введена соответствующая ступень защиты от повышения напряжения;
- выбран режим «ВВЕДЕНА» или выше;
- отсутствие сигнала блокировки защиты.

При снижении заданного напряжения ниже уставки выдается сигнал на ИО и запускается уставка по времени Тср. Если уровень напряжения менее уставки сохраняется по истечении времени Тср, создаётся сигнал срабатывания защиты.

Возврат защиты происходит:

- а) если задана уставка возврата, то по превышению напряжением уставки возврата на время равное Твз;
- б) если уставка возврата не введена, то по превышению напряжением основной уставки с учётом коэффициента возврата.

В случае ввода функции возврата по уставке возможна реализация автоматического повторного включения по возврату. ВНИМАНИЕ! АПВ по возврату («АПВ ВЗ») возможно только при разрешенном АПВ.

Функциональная схема ступени защиты от понижения напряжения приведена на рисунке 6.13. Блок, показанный на рисунке 6.13, реализован программно.

Внимание! При скачкообразном возрастании напряжения от 0 до значения напряжения выше уставки возможна некорректная работа ступени U< или U<< с нулевой уставкой по времени. Во избежание ложного срабатывания рекомендуется вводить уставку по времени от 10 мс и выше.

Обе ступени функционально идентичны и имеют характеристики, указанные в таблице 6.8.

Таблица 6.8

	Наименование параметра	Значение
1	Диапазон уставок по напряжению	0-256 B
2	Диапазон уставок по времени	0-3000 c
3	Дискретность уставок:	
	по напряжению	0,01 B
	по времени	0,01c (0,1c)
4	Коэффициент возврата	1,05
5	Относительная погрешность срабатывания по	±2 %
	напряжению	±2 /0
6	Основная погрешность срабатывания по времени:	±10 мс

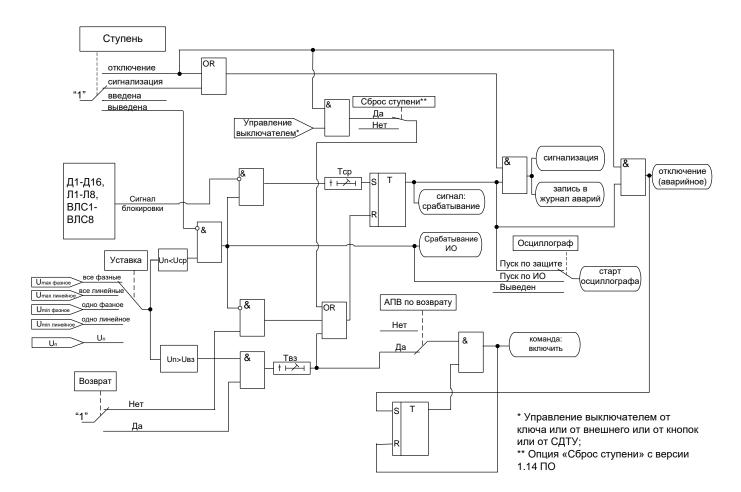


Рисунок 6.13 – Блок защиты от понижения напряжения.

6.3.3 Защита от повышения напряжения нулевой последовательности

Защита от повышения напряжения нулевой последовательности может иметь две ступени с независимой уставкой по времени. Защита работает путем сравнения измеренного Un (сигнал, поступающий непосредственно из трансформатора напряжения, обмотки которого представляют собой «разомкнутый треугольник») или расчётного U0 (вычисленного из фазных напряжений) напряжения нулевой последовательности с уставками ступеней Uo>, Uo>>.

Все ступени могут иметь функцию возврата измерительного органа защиты по уставке, автоматическое повторное включение по возврату и блокировку ступени от внешнего сигнала. С версии 1.14 ПО в случае срабатывания ступени с возвратом при отсутствии фактора срабатывания ступень может быть сброшена (опция «СБРОС СТУПЕНИ») до появления сигнала возврата по операциям с выключателем (от ключа, от внешнего управления, от кнопок, от СДТУ).

При недостоверном определении напряжения (п. 4) ступень блокируется.

Режимы работы зашиты:

- «ВЫВЕДЕНА» защита выведена из работы;
- «ВВЕДЕНА» защита введена в работу с контролированием уставки по времени. Отключения выключателя и действия на сигнализацию не происходит.
- «СИГНАЛИЗАЦИЯ» как при «ВВЕДЕНА», но с действием в схему сигнализации и записью в журнал аварий;
- «ОТКЛЮЧЕНИЕ» то же, что и при режиме «СИГНАЛИЗАЦИЯ», плюс действие на отключение выключателя;

Наличие функций «АПВ», «УРОВ», «АВР», «ОСЦИЛЛОГРАФ», «СБРОС СТУПЕНИ» по каждой ступени задаётся в уставках конфигурации.

Внимание! Не рекомендуется вводить одновременно АПВ и АВР.

Условия срабатывания ступени защиты:

- введена соответствующая ступень защиты от повышения напряжения;
- выбран режим «ВВЕДЕНА» или выше;
- отсутствие сигнала блокировки защиты.

При превышении напряжением нулевой последовательности уставки выдается сигнал на ИО и запускается уставка по времени Тср. Если уровень напряжения выше уставки сохраняется по истечении времени Тср, создаётся сигнал срабатывания защиты.

Возврат защиты происходит:

- а) если задана уставка возврата, при снижении напряжения ниже уставки возврата на время равное Твз;
- б) если уставка возврата не введена, то по снижению напряжения ниже основной уставки с учётом коэффициента возврата.
- В случае ввода функции возврата по уставке возможна реализация автоматического повторного включения по возврату. ВНИМАНИЕ! АПВ по возврату

(«АПВ ВЗ») возможно только при разрешенном АПВ.

Обе ступени функционально идентичны и имеют характеристики, указанные в таблице 6.9.

Таблица 6.9

	Наименование параметра	Значение
1	Диапазон уставок по напряжению	0-256 B
2	Диапазон уставок по времени	0-3000 c
3	Дискретность уставок:	
	по напряжению	0,01 B
	по времени	0,01c (0,1c)
4	Коэффициент возврата	0,95
5	Относительная погрешность срабатывания по напряжению	±2 %
6	Основная погрешность срабатывания по времени:	±10 мс

Функциональная схема ступени защиты от повышения напряжения нулевой последовательности приведена на рисунке 6.14. Блок, показанный на рисунке 6.14, реализован программно.

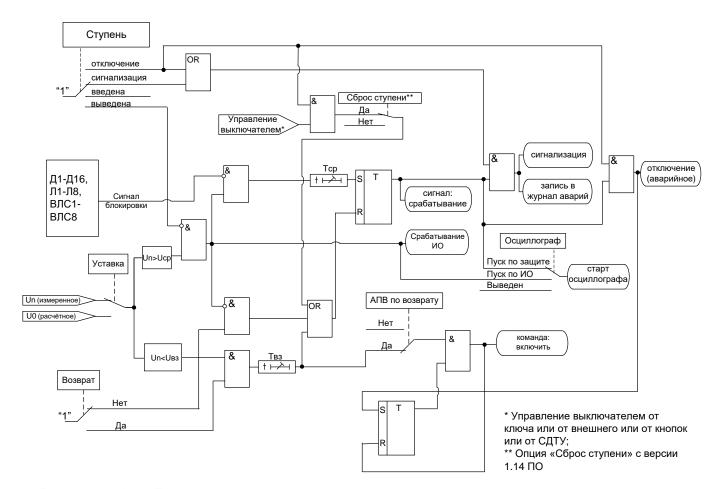


Рисунок 6.14 – Блок защиты от повышения напряжения нулевой последовательности

6.3.4 Защита от повышения напряжения обратной последовательности

Защита от повышения напряжения обратной последовательности может иметь две ступени (U2>, U2>>) с независимой уставкой по времени. Защита работает путем сравнения расчётного (вычисленного из фазных напряжений) напряжения обратной последовательности с уставками ступеней.

Все ступени могут иметь функцию возврата измерительного органа защиты по уставке, автоматическое повторное включение по возврату и блокировку ступени от внешнего сигнала. С версии 1.14 ПО в случае срабатывания ступени с возвратом при отсутствии фактора срабатывания ступень может быть сброшена (опция «СБРОС СТУПЕНИ») до появления сигнала возврата по операциям с выключателем (от ключа, от внешнего управления, от кнопок, от СДТУ).

При недостоверном определении напряжения (п. 4) ступень блокируется.

Режимы работы защиты:

«ВЫВЕДЕНА» - защита выведена из работы;

«ВВЕДЕНА» - защита введена в работу с контролированием уставки по времени. Отключения выключателя и действия на сигнализацию не происходит.

«СИГНАЛИЗАЦИЯ» - как при «ВВЕДЕНА», но с действием в схему сигнализации и записью в журнал аварий;

«ОТКЛЮЧЕНИЕ» - то же, что и при режиме «СИГНАЛИЗАЦИЯ», плюс действие на отключение выключателя.

Наличие функций «АПВ», «УРОВ», «АВР», «ОСЦИЛЛОГРАФ», «СБРОС СТУПЕНИ» по каждой ступени задаётся в уставках конфигурации.

Внимание! Не рекомендуется вводить одновременно АПВ и АВР.

Условия срабатывания ступени защиты:

- введена соответствующая ступень защиты от повышения напряжения, выбран режим «ВВЕДЕНА» или выше;
 - отсутствие сигнала блокировки защиты.

При превышении напряжением обратной последовательности уставки выдается сигнал на ИО и запускается уставка по времени Тср. Если уровень напряжения выше уставки сохраняется по истечении времени Тср, создаётся сигнал срабатывания защиты.

Возврат защиты происходит:

- а) если задана уставка возврата, при снижении напряжения ниже уставки возврата на время равное Твз;
- б) если уставка возврата не введена, то по снижению напряжения ниже основной уставки с учётом коэффициента возврата.

В случае ввода функции возврата по уставке возможна реализация автоматического повторного включения по возврату. ВНИМАНИЕ! АПВ по возврату

(«АПВ ВЗ») возможно только при разрешенном АПВ.

Функциональная схема ступени защиты от повышения напряжения обратной последовательности приведена на рисунке 6.15. Блок, показанный на рисунке 6.15, реализован программно.

Обе ступени функционально идентичны и имеют характеристики, указанные в таблице 6.10.

Таблица 6.10

	Наименование параметра	Значение
1	Диапазон уставок по напряжению	0-256 B
2	Диапазон уставок по времени	0-3000 c
3	Дискретность уставок:	
	по напряжению	0,01 B
	по времени	0,01c (0,1c)
4	Коэффициент возврата	0,95
5	Относительная погрешность срабатывания по напряжению	±2 %
6	Основная погрешность срабатывания по времени:	±10 мс

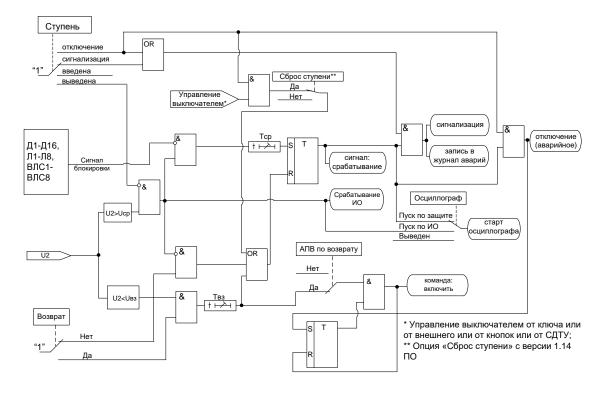


Рисунок 6.15 – Блок защиты от повышения напряжения обратной последовательности

6.4. Защиты по частоте

6.4.1 Защита от повышения частоты

Защита от повышения частоты может иметь две ступени (F>, F>>) с независимой уставкой по времени. Защита работает путем сравнения измеренной частоты с уставками ступеней.

Предусмотрены возможности возврата по уставке, автоматическое повторное включение по возврату и блокировки ступени от внешнего сигнала. С версии 1.14 ПО в случае срабатывания ступени с возвратом при отсутствии фактора срабатывания ступень может быть сброшена (опция «СБРОС СТУПЕНИ») до появления сигнала возврата по операциям с выключателем (от ключа, от внешнего управления, от кнопок, от СДТУ).

При недостоверном определении частоты (п. 4) ступень блокируется.

Режимы работы защиты:

«ВЫВЕДЕНА» - защита выведена из работы;

«ВВЕДЕНА» - защита введена в работу с контролированием уставки по времени. Отключения выключателя и действия на сигнализацию не происходит.

«СИГНАЛИЗАЦИЯ» - как при «ВВЕДЕНА», но с действием в схему сигнализации и записью в журнал аварий;

«ОТКЛЮЧЕНИЕ» - то же, что и при режиме «СИГНАЛИЗАЦИЯ», плюс действие на отключение выключателя:

Наличие функций «АПВ», «УРОВ», «АВР», «ОСЦИЛЛОГРАФ», «СБРОС СТУПЕНИ» по каждой ступени задаётся в уставках конфигурации.

Внимание! Не рекомендуется вводить одновременно АПВ и АВР.

Условия срабатывания ступени защиты:

- введена соответствующая ступень защиты от повышения частоты;
- выбран режим «ВВЕДЕНА» или выше;
- отсутствие сигнала блокировки защиты.

При превышении частотой уставки выдается сигнал на ИО и запускается уставка по времени Тср. Если уровень частоты выше уставки сохраняется по истечении времени Тср, создаётся сигнал срабатывания защиты.

Возврат защиты происходит:

- а) если задана уставка возврата, при снижении частоты ниже уставки возврата на время равное Твз.
- б) если уставка возврата не введена, то по снижению частоты ниже основной уставки с учётом зоны возврата.

В случае ввода функции возврата по уставке возможна реализация автоматического повторного включения по возврату. ВНИМАНИЕ! АПВ по возврату

(«АПВ ВЗ») возможно только при разрешенном АПВ.

Обе ступени функционально идентичны и имеют характеристики, указанные в таблице 6.11.

Таблица 6.11

	Наименование параметра	Значение
1	Диапазон уставок по частоте	40-60 Гц
2	Диапазон уставок по времени	0-3000 c*
3	Дискретность уставок:	
	по частоте	0,01 Гц
	по времени	0,01c (0,1c)
4	Зона возврата	0,05 Гц
5	Погрешность измерения частоты возврата	±0,05 Гц
6	Основная погрешность срабатывания по времени:	±10 мс

*Примечание – диапазон уставок по времени дается без учета собственного времени работы измерительного органа. Время работы измерительного органа по частоте не более 200 мс. Выдержка времени защит определяется как сумма параметров «уставка по времени» и «собственное время работы измерительного органа».

Функциональная схема ступени защиты от повышения частоты приведена на рисунке 6.16. Блок, показанный на рисунке 6.16 реализован программно.

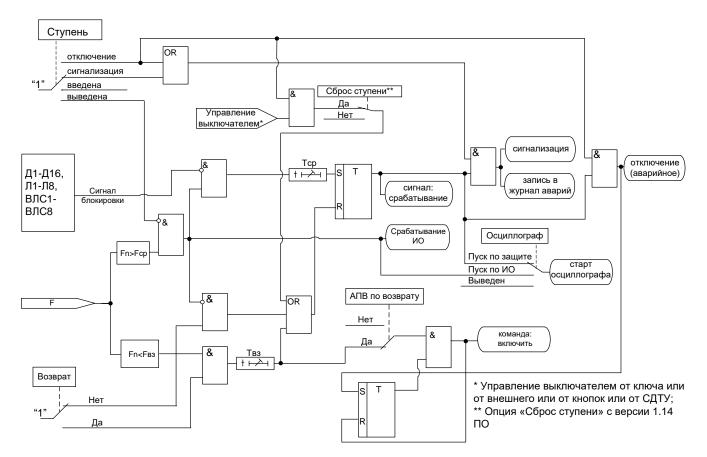


Рисунок 6.16 – Блок защиты от повышения частоты.

6.4.2 Защита от понижения частоты

Защита от понижения частоты может иметь две ступени (F<, F<<) с независимой уставкой по времени. Защита работает путем сравнения измеренной частоты с уставками ступеней.

Предусмотрены возможности возврата по уставке, автоматическое повторное включение по возврату и блокировки ступени от внешнего сигнала. С версии 1.14 ПО в случае срабатывания ступени с возвратом при отсутствии фактора срабатывания ступень может быть сброшена (опция «СБРОС СТУПЕНИ») до появления сигнала возврата по операциям с выключателем (от ключа, от внешнего управления, от кнопок, от СДТУ).

При недостоверном определении частоты (п. 4) ступень блокируется.

Режимы работы защиты:

- «ВЫВЕДЕНА» защита выведена из работы;
- «ВВЕДЕНА» защита введена в работу с контролированием уставки по времени. Отключения выключателя и действия на сигнализацию не происходит.
- «СИГНАЛИЗАЦИЯ» как при «ВВЕДЕНА», но с действием в схему сигнализации и записью в журнал аварий;
- «ОТКЛЮЧЕНИЕ» то же, что и при режиме «СИГНАЛИЗАЦИЯ», плюс действие на отключение выключателя.

Наличие функций «АПВ», «УРОВ», «АВР», «ОСЦИЛЛОГРАФ», «СБРОС СТУПЕНИ» по каждой ступени задаётся в уставках конфигурации.

Внимание! Не рекомендуется вводить одновременно АПВ и АВР.

Условия срабатывания защиты:

- введена соответствующая ступень защиты от понижения частоты;
- выбран режим «ВВЕДЕНА» или выше;
- отсутствие сигнала блокировки защиты.

При снижении частоты ниже уставки выдается сигнал на ИО и запускается уставка по времени Тср. Если уровень частоты менее уставки сохраняется по истечении времени Тср, создаётся сигнал срабатывания защиты.

Возврат защиты происходит:

- а) если задана уставка возврата, то по превышению уставки возврата на время равное Твз.
- б) если уставка возврата не введена, то по превышению основной уставки с учётом зоны возврата.

В случае ввода функции возврата по уставке возможна реализация автоматического повторного включения по возврату. ВНИМАНИЕ! АПВ по возврату

(«АПВ ВЗ») возможно только при разрешенном АПВ.

Функциональная схема ступени защиты от понижения частоты приведена на рисунке 6.17. Блок, показанный на рисунке 6.17 реализован программно.

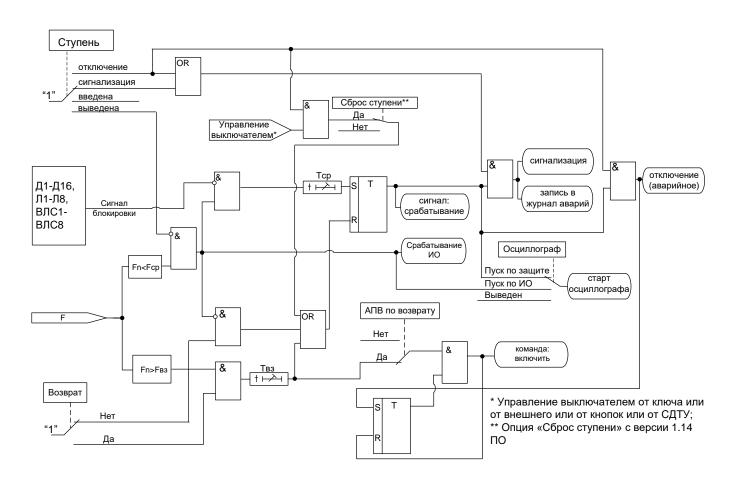


Рисунок 6.17 – Блок защиты от понижения частоты

Обе ступени функционально идентичны и имеют характеристики, указанные в таблице 6.12.

Таблица 6.12

	Наименование параметра	Значение
1	Диапазон уставок по частоте	40-60 Гц
2	Диапазон уставок по времени	0-3000 c*
3	Дискретность уставок:	
	по частоте	0,01 Гц
	по времени	0,01c (0,1c)
4	Зона возврата	0,05 Гц
5	Погрешность измерения частоты возврата	±0,05 Гц
6	Основная погрешность срабатывания по времени:	±10 мс

^{*} Примечание – диапазон уставок по времени дается без учета собственного времени работы измерительного органа. Время работы измерительного органа по частоте не более 200 мс. Выдержка времени защит определяется как сумма параметров «уставка по времени» и «собственное время работы измерительного органа».

6.5 Автоматика

6.5.1 Автоматическое повторное включение (АПВ)

Устройство АПВ предназначено для автоматического повторного включения присоединения после его самопроизвольного отключения или отключения от устройств защиты. В MP741 реализовано АПВ четырёхкратного действия.

АПВ имеет уставки по длительности первого, второго, третьего и четвёртого цикла АПВ, по длительности блокировки АПВ и по времени готовности АПВ.

Время блокировки Тб – время блокировки АПВ после включения выключателя вручную или через СДТУ.

Время готовности Тг – время, по истечении которого АПВ возвращается в исходное состояние.

Принцип действия АПВ.

Фактором пуска АПВ является отключение выключателя:

- самопроизвольное (СО), если это разрешено в настройках конфигурации;
- от защиты, по которой разрешёно АПВ.

Необходимым условием пуска АПВ является отсутствие неисправностей и отказов выключателя и наличие сработавших ступеней защиты.

Функциональная схема АПВ приведена на рисунке 6.18. Блок, показанный на рисунке 6.18, реализован программно.

При появлении фактора пуска (после истечения Туров) запускается таймер первого цикла Т1, который отсчитав установленное время, действует на включение выключателя присоединения. Одновременно запускается таймер Тг, контролирующий успешность АПВ. Если за время Тг не происходит отключения выключателя, то АПВ считается успешным.

Если в течение времени Тг происходит отключение выключателя, то первый крат АПВ считается неуспешным и таймер Т1 блокируется. Если АПВ введено на 2 крата, то происходит пуск таймера второго цикла АПВ Т2. Таймер второго цикла АПВ, отсчитав установленное время, действует на включение выключателя. Одновременно запускается таймер Тг. Если за время Тг не происходит отключения выключателя, то АПВ считается успешным.

Если в течение времени Тг происходит отключение, то АПВ считается неуспешным и блокируется. После истечения времени Тг происходит возврат АПВ в исходное состояние.

Внимание! Недопустимо задавать Туров больше, чем Тг.

При 3-х кратном и 4-х кратном АПВ алгоритм действий устройства аналогичен логике 2-х кратного АПВ.

При ручном включении силового выключателя АПВ блокируется на время Тб. Также предусмотрена возможность запрета АПВ от внешнего сигнала.

Характеристики АПВ показаны в таблице 6.13.

Таблица 6.13

	Наименование параметра	Значение
1	Диапазон уставок по времени:	0-3000 с
2	Дискретность уставок по времени:	0,01 c (0,1 c)
3	Основная погрешность срабатывания по времени:	±10 мс

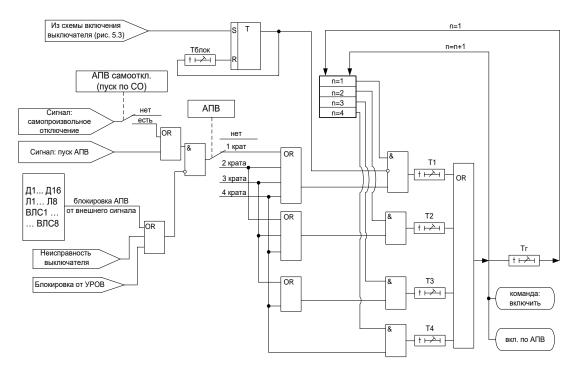


Рисунок 6.18 – Блок АПВ

6.5.2 Функция УРОВЗ (совместная реализация устройства резервирования отказа выключателя УРОВ и логической защиты шин ЛЗШ)

Принцип действия УРОВЗ основывается на совместной блокировке быстродействующей защиты на питающем присоединении пусковыми органами УРОВ и ЛЗШ. В случае срабатывания ступени ЛЗШ на отходящей линии формируется сигнал «РАБОТА ЛЗШ», который может быть использован для блокировки быстродействующей ступени на питающих присоединениях.

Для МР741 до версии 1.14 ПО

Если в течение Туров после команды на отключение собственного выключателя ток не снизился до уровня меньше Іуст.уров, то формируется сигнал УРОВ (см. рис. 5.5), который блокирует выдачу сигнала ЛЗШ (рис. 6.19), т.е. разрешается действие быстродействующей ступени на питающих присоединениях (реализуется функция УРОВ).

Для MP741 c версии 1.14 ПО

ЛЗШ может работать в одном из двух режимов - по «СХЕМЕ 1» или «СХЕМЕ 2». В случае работы по «СХЕМЕ 1» выдача сигнала «РАБОТА ЛЗШ» блокируется при появлении сигнала «работа УРОВ», т.е. реализуется функция УРОВ (рисунок 6.19).

В случае работы по «СХЕМЕ 2» выдача сигнала «РАБОТА ЛЗШ» блокируется при выдаче команды «отключение (аварийное)» (рисунок 6.19а). При использовании данной схемы обязательно реализовать выдержку времени УРОВ (200-300 мс) на быстродействующей ступени на питающих присоединениях.

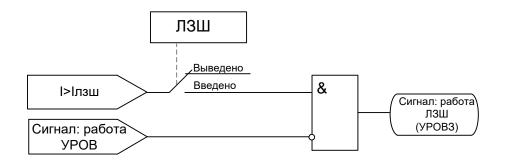


Рисунок 6.19 – Блок-схема логики УРОВЗ (до версии 1.14 ПО)

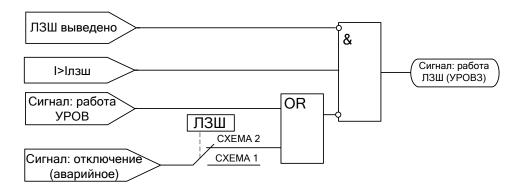


Рисунок 6.19а – Блок-схема логики УРОВЗ (с версии 1.14 ПО)

Таблица 6.14

	Наименование параметра	Значение
1	Диапазон уставок по току:	0–40 Ін
2	Диапазон уставок по времени:	0-3000c
3	Дискретность уставок:	
	по току	0,01 Ін
	по времени	0,01 c (0,1 c)
4	Основная погрешность срабатывания по току:	
	в диап. 0,2 – 2 Ін, приведенная к 2Ін	±1,5 %
	в диап. 2,1 – 40 lн относительная	±2,5 %
5	Основная погрешность срабатывания по времени:	±10 мс

6.5.3 Устройство автоматического включения резерва (АВР)

Логика работы ABP имеет несколько режимов (состояний): готовность; пуск; включение резерва; возврат; отключение резерва. Режимы автоматически переключаются в соответствии с выполнением необходимых условий. Помимо этого, параллельно реализуется логика формирования сигнала блокировки ABP.

При включении терминала или при перезаписи конфигурации, АВР переходит в состояние готовности. В этом режиме происходит проверка условий необходимых для пуска АВР и переход в состояние пуска. На рисунке 6.20 представлена логика режима «ГОТОВНОСТЬ».

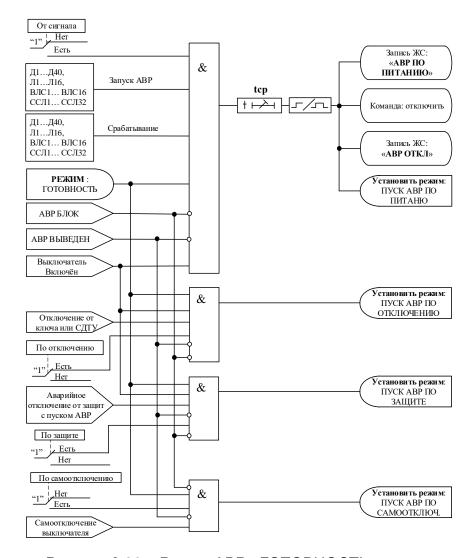


Рисунок 6.20 — Режим ABP «ГОТОВНОСТЬ»

Переход в состояние пуска может происходить по одному из следующих факторов:

- 1. По отключению выключателя по командам от ключа, от кнопок, внешнего отключения, от СДТУ. Необходимые условия для пуска:
 - значение уставки «ПО ОТКЛЮЧЕНИЮ» «Есть»;
- наличие сигнала отключения по команде от ключа (от кнопок, внешнего отключения, от СДТУ);
 - положение выключателя «Включено»;
 - отсутствие сигнала «АВР БЛОК».

При выполнении выше перечисленных условий происходит переход в режим «ПУСК АВР ПО ОТКЛЮЧЕНИЮ».

- 2. По самопроизвольному отключению выключателя. Необходимые условия для пуска:
 - значение уставки «ПО САМООТКЛЮЧЕНИЮ» «Есть»;
 - диагностирование устройством самопроизвольного отключения выключателя;
 - отсутствие сигнала «АВР БЛОК».

При выполнении выше перечисленных условий происходит переход в режим «ПУСК АВР ПО САМООТКЛЮЧ.».

- 3. По отключению от защиты с пуском АВР. Необходимые условия для пуска:
- значение уставки «ПО ЗАЩИТЕ» «Есть»;
- аварийное отключение от защиты с пуском ABP;
- положение выключателя «Включено»;
- отсутствие сигнала «АВР БЛОК».

При выполнении выше перечисленных условий происходит переход в режим «ПУСК АВР ПО ЗАЩИТЕ».

- 4. По потери питания от внешнего сигнала. Необходимые условия для пуска:
- значение уставки «ОТ СИГНАЛА» «Есть»;
- наличие **«Запуск ABP (от сигнала)»** сигнала исчезновения напряжения на рабочем источнике:
- наличие сигнала «**Срабатывание**» сигнала наличия напряжения на резервном источнике питания и отключённого состояния резервного выключателя;
 - положение выключателя «Включено»;
 - отсутствие сигнала «АВР БЛОК».

При наличии указанных сигналов в течении времени «**tcp**» происходит формировании команды отключения собственного выключателя, генерация записи в ЖС и переход в режим «ПУСК АВР ПО ПИТАНИЮ».

Сигналы «Срабатывание» и «Запуск ABP (от сигнала)» должны формироваться в соответствии с описанием, представленным выше. Использование других сигналов для формирования «Срабатывание» и «Запуск ABP (от сигнала)» категорически недопустимо, так как это может привести к излишней блокировке ABP.

В состоянии пуска ожидается отключение выключателя и при отсутствии сигнала блокировки формируется запись ЖС о факторе пуска и переход в режим включения резерва. На рисунке 6.21 представлена логика режима пуска.

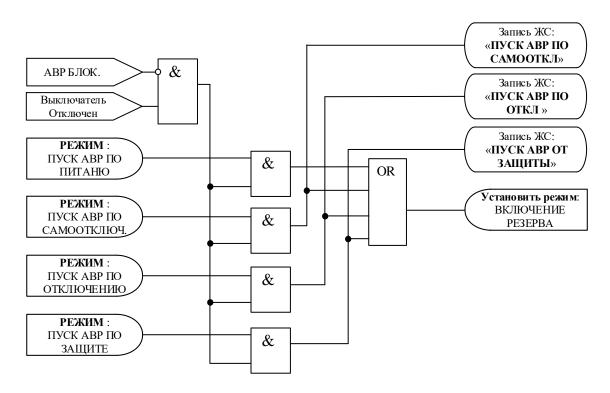


Рисунок 6.21 – Режим пуска АВР

На рисунке 6.22 представлена логика режима «ВКЛЮЧЕНИЕ РЕЗЕРВА».

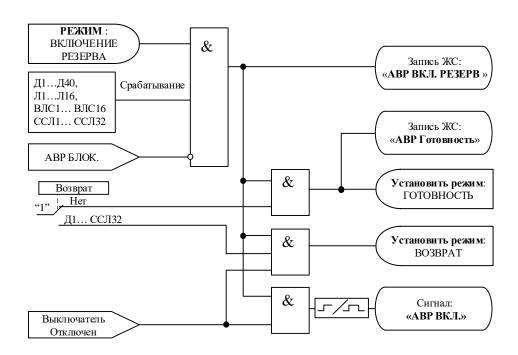


Рисунок 6.22 - Режим ABP «ВКЛЮЧЕНИЕ РЕЗЕРВА»

В данном режиме формируется сигнал включения резерва и выполняется переход в режим «BO3BPAT» (при заданном сигнале возврата) или переход в режим «ГОТОВНОСТЬ».

Сигнал включения резерва «**ABP ВКЛ**» формируется при выполнении следующих условий:

- наличие сигнала «Срабатывание»;
- отсутствие сигнала «АВР БЛОК»;
- при отключённом положении выключателя.

На рисунке 6.23 представлена логика режима «BO3BPAT».

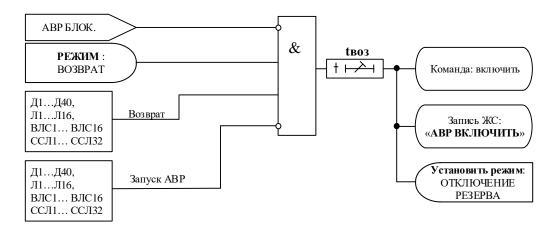


Рисунок 6.23 - Режим ABP «ВОЗВРАТ»

Для включения собственного выключателя и перехода в состояние «ОТКЛЮЧЕНИЕ РЕЗЕРВА» необходимо выполнение следующих условий в течении времени «**tвоз**»:

- отсутствие сигнала «АВР БЛОК»;
- появление сигнала «**Возврат**» сигнал появления напряжения на рабочем источнике и включённого состояния выключателя резерва;
 - наличие напряжения на рабочем источнике питания (отсутствие «**Сигнал пуска**»). На рисунке 6.24 представлена логика режима «ОТКЛЮЧЕНИЕ РЕЗЕРВА».

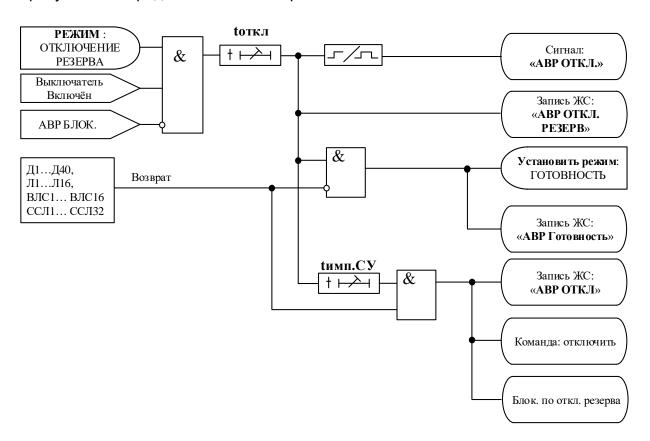


Рисунок 6.24 – Режим ABP «ОТКЛЮЧЕНИЕ РЕЗЕРВА»

После перехода в состояние «ОТКЛЮЧЕНИЕ РЕЗЕРВА» ожидается включённое положение выключателя и при отсутствии сигнала «**ABP БЛОК**» через время «**tоткл**» формируется сигнал отключения выключателя резервного источника питания «**ABP ОТКЛ**» и запись в ЖС. При успешном отключение выключателя резервного источника питания (пропадание сигнала «**Bospat**») логика ABP переходит в режим «ГОТОВНОСТЬ». В противном случае (нет пропадания сигнала «**Bospat**») через время «**tumn.Су**» форми-

53

руется команда отключения собственного выключателя, запись сообщения в ЖС «АВР ОТКЛ» и выдача сигнала в схему блокировки АВР.

Логика блокировки АВР представленной на рисунке 6.25.

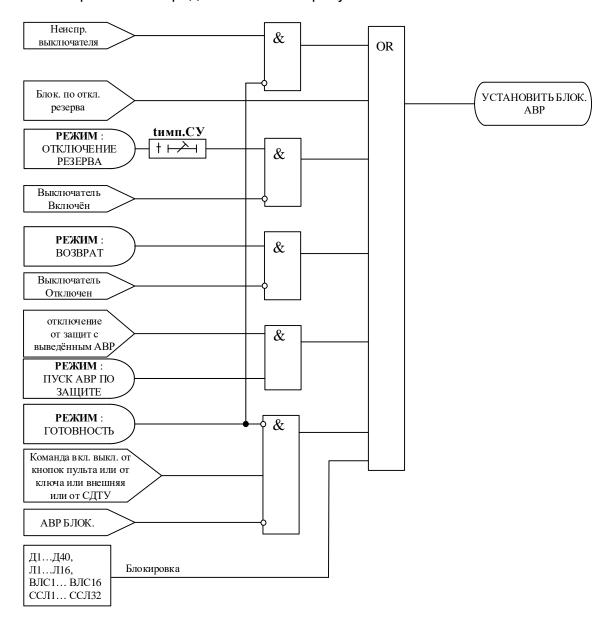


Рисунок 6.25 – Логика блокировки АВР

Блокировка АВР может сформироваться по следующим факторам:

- 1. При диагностировании устройством неисправности силового выключателя в случае, если ABP не находится в режиме «ГОТОВНОСТЬ»;
 - 2. При наличии сигнала блокировки АВР из логики режима отключения резерва;
- 3. При отсутствии сигнала включённого положения выключателя после перехода в состояние отключения резерва в течении времени «**tumn.Cy**»;
- 4. При отсутствии сигнала отключённого положения выключателя после перехода в состояние «BO3BPAT»;
- 5. При состоянии «ПУСК АВР ПО ЗАЩИТЕ» и работе защиты на отключение без пуска АВР;
- 6. *При подаче команды на включение выключателя* в случае, если ABP не находится в режиме «ГОТОВНОСТЬ» и отсутствии сигнал «**АВР БЛОК**»;
 - 7. При наличии сигнала «Блокировка».

При выполнении хотя бы одной из условий происходит передача сигнала блокировки ABP в схему формирования сигнала «**ABP БЛОК**». Логика сброса блокировки АВР представленной на рисунке 6.26.

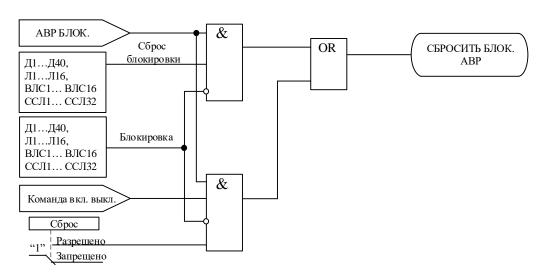


Рисунок 6.26 – Логика сброса блокировки АВР

При отсутствии внешнего сигнала «**Блокировка**» сброс блокировки ABP может быть выполнен следующим образом:

- 1. Подачей сигнала «Сброс блокировки»;
- 2. При разрешённом сбросе ABP по команде включения выключателя подачей команды включения выключателя.

При выполнении одного из условий происходит передача сигнала сброса ABP в схему формирования сигнала «**ABP БЛОК**».

На рисунке 6.27 приведена схема формирования сигнала «**АВР БЛОК**».

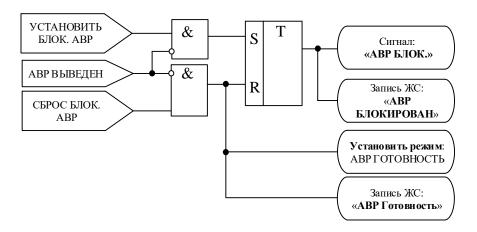


Рисунок 6.27 – Логика формирования сигнала «**АВР БЛОК**»

Сигнал «**ABP БЛОК**» фиксируется до момента его сброса. Сброс сигнала «**ABP БЛОК**» выполняется одним из двух указанных выше способов.

Для информирования оперативного персонала о блокировке ABP необходимо выводить сигнал «**ABP БЛОК**» на светодиодный индикатор терминала MP или на сигнальную лампу на релейной панели, формировать предупредительный сигнал при блокировке ABP в схему сигнализации объекта.

ABP является выведенным при незаданном сигнале «Срабатывание» или при выведенных всех факторах пуска ABP (рисунок 6.28).

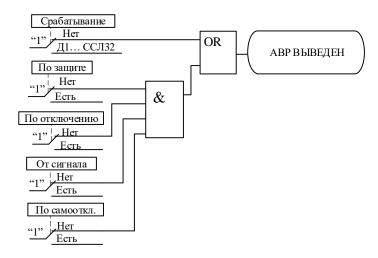


Рисунок 6.28 – Логика вывода АВР

Важно! Внешний сигнал блокировки или неуспешная работа ввода или возврата АВР приводят к фиксации блокировки схемы АВР. При этом в «Журнале системы» формируется запись о причине и срабатывает сигнал «Блокировка АВР». Сброс блокировки АВР и возврат схемы в нормальный режим происходит путем подачи команды на управление выключателем или по внешнему сигналу «Сброс блокировки». В соответствии с приведенными выше схемами.

Для оперативного вывода/ввода АВР можно применять один из следующих способов:

1. Для вывода из работы использовать дискретный вход, заведённый на логический вход логики ABP «**Блокировка**», при этом уставка ABP «**Сброс**» должна быть задана как «**Разрешено**».

Рекомендуется выполнять ввод в работу ABP при отключенном положении выключателя посредством переключения ключа «Ввод/вывод ABP» в положение «Введено». После включения выключателя блокировка ABP будет сброшена.

Если переключение ключа «Ввод/вывод ABP» в положение «Введено» было выполнено при включённом положении выключателя, то сброс блокировки должен быть выполнен посредством подачи дополнительной команды на включение выключателя.

2. Для вывода из работы ABP использовать дискретный вход, который заведён на логический вход логики ABP «Блокировка». Для ввода в работу ABP по положению ключа «Введено» необходимо сигнал с ключа завести через «импульсный таймер по спаду 2-го типа» с уставкой по времени 100 мс на выход ССЛ, который в свою очередь должен быть заведен на вход «Сброс блокировки» в соответствии с рисунком 6.29. Таким образом, при положении ключа «Выведено» АВР будет блокирован, а при переключении ключа в положение «Введено» блокировка АВР будет сниматься.

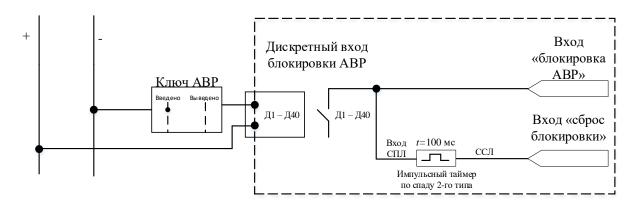


Рисунок 6.29 – Схема для оперативного ввода/вывода АВР из работы

6.5.4 Внешние защиты

В устройстве имеется возможность работы с внешними защитами. Всего есть возможность подключить до восьми внешних защит ВЗ-1, ВЗ-2,.... ВЗ-8. Внешняя защита пускается при появлении сигнала на заданном дискретном входе, при выполнении условия отсутствия блокирующего сигнала. При срабатывании внешних защит фиксируются все параметры аварийного события, как при срабатывании собственных защит. Предусмотрены возврат по внешнему сигналу с задержкой времени и автоматическое повторное включение по возврату. С версии 1.14 ПО в случае срабатывания ступени с возвратом при отсутствии фактора срабатывания ступень может быть сброшена (опция «СБРОС СТУПЕНИ») до появления сигнала возврата по операциям с выключателем (от ключа, от внешнего управления, от кнопок, от СДТУ).

Возврат защиты происходит:

- a) если введена функция возврата по внешнему сигналу, по выполнению двух условий:
 - пропадание внешнего сигнала срабатывания;
 - появление внешнего сигнала возврата на время Твз.
 - б) если функция возврата по внешнему сигналу выведена:
 - по исчезновению сигнала срабатывания;
 - при появлении блокирующего сигнала.

Режимы работы защиты:

«ВЫВЕДЕНА» - защита выведена из работы;

«СРАБАТЫВАНИЕ» - защита введена в работу с контролированием уставки по времени. Отключения выключателя и действия на сигнализацию не происходит.

«СИГНАЛИЗАЦИЯ» - как при «СРАБАТЫВАНИЕ», но с действием в схему сигнализации и записью в журнал аварий;

«ОТКЛЮЧЕНИЕ» - то же, что и при режиме «СИГНАЛИЗАЦИЯ», плюс действие на отключение выключателя.

Наличие функций «АПВ», «УРОВ», «АВР», «ОСЦИЛЛОГРАФ», «СБРОС СТУПЕНИ» по каждой ступени задаётся в уставках конфигурации.

Внимание! Не рекомендуется вводить одновременно АПВ и АВР.

Все ступени функционально идентичны и имеют характеристики, указанные в таблице 6.15.

Таблица 6.15

	Наименование параметра	Значение
1	Диапазон уставок по времени:	0-3000 с
2	Дискретность уставок по времени:	0,01 c (0,1 c)
3	Основная погрешность срабатывания по времени:	±10 мс

Функциональная схема внешней защиты приведена на рисунке 6.30. Блок, показанный на рисунке 6.30, реализован программно.

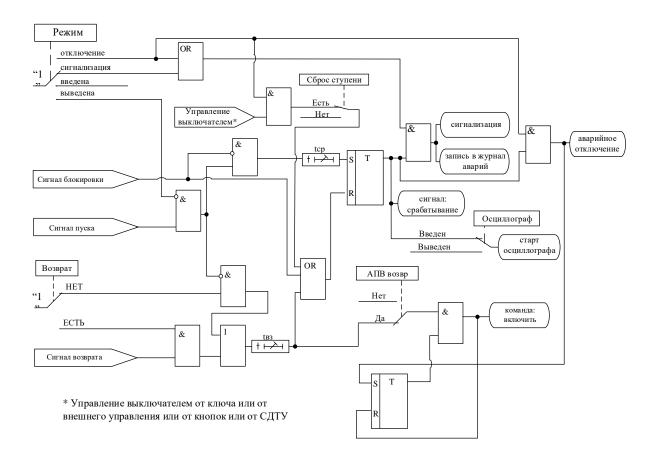


Рисунок 6.30 – Блок внешней защиты.

6.6 Определение места повреждения

МР741 имеет встроенный орган определения места повреждения (ОМП), предназначенный для определения расстояния до мест двухфазных и трёхфазных КЗ.

Расчёт расстояния до места повреждения L_{κ_3} , км, производится по формуле

$$L_{K3} = rac{Im \left(rac{U_{Moldsymbol{\phi}}}{I_{Moldsymbol{\phi}}}
ight)}{X_{yJ}},$$

где
$$\mathit{Im}\!\left(rac{U_{Moldsymbol{\phi}}}{I_{Moldsymbol{\phi}}}
ight)$$
 – мнимая часть отношения векторов $rac{U_{Moldsymbol{\phi}}}{I_{Moldsymbol{\phi}}}$;

 $I_{\scriptscriptstyle M\Phi}$ – междуфазный ток, А;

 $U_{{\scriptscriptstyle M}{\scriptstyle m{\phi}}}$ – междуфазное напряжение, В;

$$I_{M\Phi} = I_{\Phi 1} - I_{\Phi 2}$$

где $\underline{I}_{\underline{\sigma_1}}$, $\underline{I}_{\underline{\sigma_2}}$ – токи повреждённых фаз, А.

$$U_{M\Phi} = U_{\Phi 1} - U_{\Phi 2}$$
,

где $U_{\Phi 1}, U_{\Phi 2}$ – напряжения повреждённых фаз, В.

Диапазоны значений параметров $X_{y_{\mathcal{I}}}$ и L_{K^3} приведены в таблице 6.15а.

Таблица 6.15а

Наименование параметра	Диапазон значений
Удельное первичное индуктивное сопро-	От 0 до 1
тивление линии $X_{_{V\!\mathcal{I}}}$, Oм/км	
Расстояние до места повреждения L_{K3} , км	От 0 до 256

Орган ОМП в МР741 осуществляет измерение индуктивного сопротивления по двум фазам с наибольшими токами два раза за период промышленной частоты. Измерение индуктивного сопротивления осуществляется непрерывно. В случае срабатывания защиты (I>, I>>, I>>>) расстояние до места повреждения фиксируется в журнале аварий. В журнале отображается дата и время повреждения, расстояние до места КЗ, тип КЗ, токи и напряжения. Запись ОМП в журнале аварий производится при срабатывании любой ступени защиты от повышения тока введённой в режиме «Сигнализация» или выше. В случае одновременного срабатывания двух ступеней от повышения тока в журнале аварий формируется две записи о срабатывании ступеней и одна запись ОМП.

Для более точной работы ОМП рекомендуется вводить минимальную выдержку времени 40 мс для ступеней от повышения тока.

6.7 Определяемая пользователем логика

6.7.1 Общие положения

Конфигурирование определяемой пользователем логики осуществляется с помощью специального редактора (встроенного в программу УниКон), который обеспечивает построение схемы релейной защиты на графическом языке функциональных блоков.

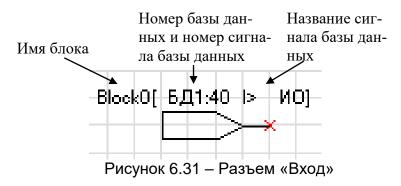
Задача определяемой пользователем логики реализуется в десятимиллисекундном цикле. Объём программы ограничен 2016 байтами.

В МР741 выходные логические сигналы могут быть заведены на логические входы блокировки, срабатывания и управления функций защит, автоматики и управления выключателем.

МР741 имеет следующие функциональные блоки: входы, выходы, записи в журнал, логические элементы «И», «ИЛИ», «Исключающее ИЛИ», «НЕ», триггеры, таймеры, мультиплексоры.

Каждому блоку схемы автоматически присваивается имя Block<номер по порядку создания>. Для облегчения чтения схемы блоки могут быть переименованы

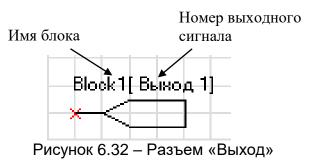
6.7.2 Разъёмы


Разъем «Вход»

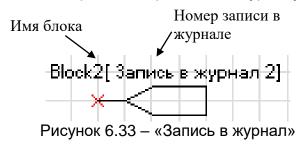
Элемент «Вход» позволяет загружать 1 бит данных из внешней базы данных устройства во внутреннюю базу данных свободно программируемой логики. Элемент «Вход» занимает объём памяти 6 байт..

Элемент «Вход» имеет один выход и позволяет подключать следующие сигналы, прямые и инверсные:

- входные дискретные сигналы;
- входные логические сигналы;
- сигнал срабатывания измерительного органа любой защиты;
- сигнал срабатывания любой защиты;
- сигналы неисправности;
- сигналы аварии, сигнализации;
- сигналы о состоянии выключателя, сигналы команд управления выключателем;
- до 16 логических ключей управления.


Логические ключи управления позволяют с пульта устройства МР741 вводить и выводить функции написанные на определяемой пользователем логике.

Разъем «Выход»


Элемент «Выход» позволяет сохранять 1 бит данных из внутренней базы данных свободно программируемой логики во внешнюю базу данных устройства. Элемент «Выход» имеет размер 6 байт.

При помощи разъёмов «Выход» МР741 позволяет выводить до 24-х выходных сигналов свободно программируемой логики на реле (ССЛ1 – ССЛ24), индикаторы и выходные логические сигналы.

Разъем «Запись в журнал»

Элемент записи событий в журнал системы имеет один вход. Если на элемент подана логическая единица, то в журнал системы будет записано назначенное событие в следующем виде: «сообщение спл № XX». Данные элементы позволяют создать до 64 свободно программируемых записей в журнал событий. При формировании записей необходимо учитывать, что ресурс энергонезависимой памяти ограничен. Вследствии этого следует избегать частых и многократных обращений к журналу системы.

6.7.3 Логический элемент «И»

Элемент «И» может иметь от 2 до 8 входов. В зависимости от числа входов элемент занимает от 8 до 20 байт памяти программы.

На элемент «И» может быть подана любая комбинация сигналов. На выходе элемента появляется логическая единица только в случае, когда все входные сигналы имеют значение логической единицы.

Имя блока

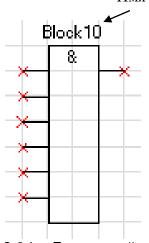


Рисунок 6.34 – Логический элемент «И»

6.7.4 Логический элемент «ИЛИ»

Элемент «ИЛИ» может иметь от 2 до 8 входов. В зависимости от числа входов элемент занимает от 8 до 20 байт памяти программы.

На вход элемента «ИЛИ» может быть подана любая комбинация сигналов. На выходе элемента появляется логическая единица в случае, когда хотя бы один входной сигнал имеет значение логической единицы.

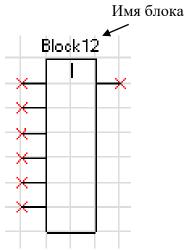


Рисунок 6.35 – Логический элемент «ИЛИ»

6.7.5 Логический элемент «Исключающее ИЛИ»

Элемент «Исключающее ИЛИ» может иметь от 2 до 8 входов. В зависимости от числа входов элемент занимает от 8 до 20 байт памяти программы.

На вход элемента «ИЛИ» может быть подана любая комбинация сигналов. На выходе элемента появляется логическая единица в случае, когда на его входах нечетное количество единиц.

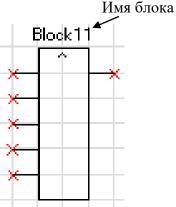


Рисунок 6.36 – Логический элемент «Исключающее ИЛИ»

6.7.6 Логический элемент «НЕ»

Элемент «НЕ» содержит один вход и один выход. Сигнал на выходе логического элемента – инвертированный входной сигнал.

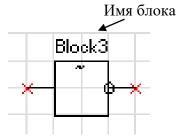


Рисунок 6.37 – Логический элемент «НЕ»

6.7.7 RS- и SR-триггеры

В MP741 существуют два типа триггеров: RS (тип 1) и SR (тип 2), с приоритетом работы по входу R и S соответственно.

Элемент «RS-триггер» («SR-тригер») имеет два входа (рисунок 6.38): устанавливающий S и сбрасывающий R. При появлении единицы на входе S формируется единица на выходе, состояние выхода запоминается и сохраняется при исчезновении единицы на входе S. Вход R сбрасывает состояние выхода в логический ноль. Объём занимаемой элементом памяти 10 байт.

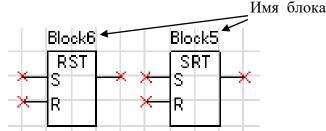


Рисунок 6.38 – «RS-триггер» и «SR-триггер»

6.7.8 Таймеры

Объём занимаемой элементом «Таймер» памяти - 12 байт. Уставка таймера по времени должна быть не менее 20 мс.

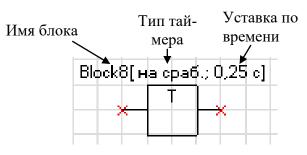


Рисунок 6.39 – Таймер

Таймер на срабатывание (таймер 1)

Элемент «таймер 1» предназначен для выполнения функции задержки времени. Сигнал на выходе таймера на срабатывание появляется через время Т_{СР} после появления сигнала на входе. При пропадании сигнала на входе сигнал пропадает и на выходе (рисунок 6.40).

Если продолжительность импульса на входе меньше, чем время срабатывания T_{CP}, то выход таймера остаётся в состоянии логического нуля.

При записи новой логической программы или старте устройства в случае наличия сигнала срабатывания – таймер отрабатывает как при прямом, так и при инверсном входе.

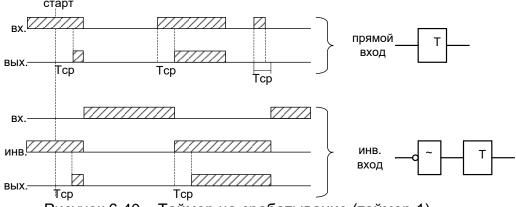


Рисунок 6.40 – Таймер на срабатывание (таймер 1)

Таймер на возврат (таймер 2)

Принцип работы: при единице на входе таймера на возврат на его выходе также будет единица. Если единица на входе пропадает, то на выходе единица сохраняется в течении времени возврата Твз (рисунок 6.41).

При старте устройства или записи новой логической программы в случае имеющегося сигнала на срабатывание — таймер отрабатывает при любом входе: прямом или инверсном.

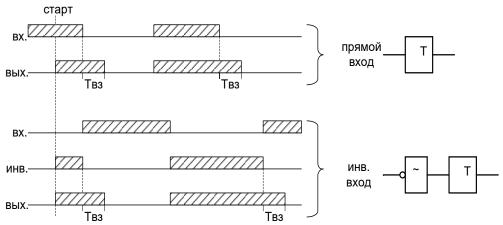


Рисунок 6.41 – Таймер на возврат (таймер 2)

Импульсный таймер по фронту типа 1 (таймер 3)

Принцип работы: срабатывание таймера 3 происходит при появлении фронта импульса на входе. Если за время работы таймера на входе появляется еще один импульс, то перезапуска таймера не происходит, т.е. импульс на выходе в любом случае не превысит время Тимп (рисунок 6.42).

Таймер не отработает при наличии на входе логической единицы во время старта устройства или записи логической программы, как при прямом, так и при инверсном входе.

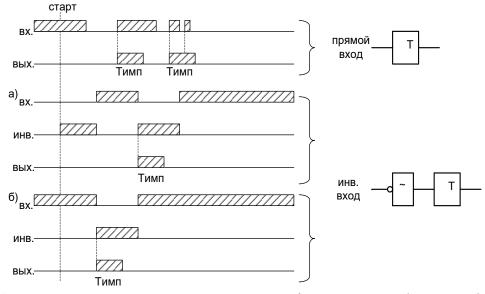


Рисунок 6.42 – Импульсный таймер по фронту типа 1 (таймер 3)

Импульсный таймер по спаду типа 1 (таймер 4)

Принцип работы: таймер срабатывает по спаду импульса на входе. При этом на выходе формируется логическая единица на время Т_{ИМП}. В случае появления на входе нового импульса и его спада за время Т_{ИМП} перезапуск таймера не происходит (рисунок 6.43).

Таймер не отработает при наличии на входе логической единицы во время старта устройства или записи логической программы, как при прямом, так и при инверсном входе.

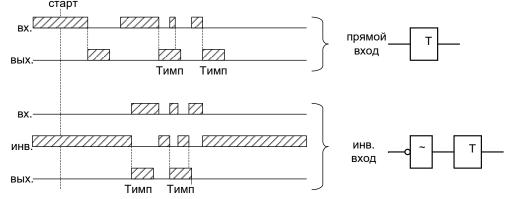


Рисунок 6.43 – Импульсный таймер по спаду типа 1 (таймер 4)

Импульсный таймер по фронту типа 2 (таймер 5)

Отличие импульсного таймера по фронту типа 2 от типа 1 в том, что при появлении новых импульсов за время работы таймера, происходит перезапуск уставки по времени таймера, т.е. с каждым новым импульсом на входе увеличивается длительность импульса на выходе на время Тимп (рисунок 6.44).

Таймер не отработает при наличии на входе логической единицы во время старта устройства или записи логической программы, как при прямом, так и при инверсном входе.

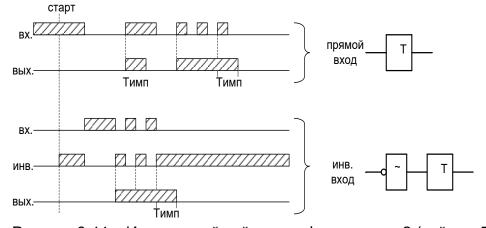


Рисунок 6.44 – Импульсный таймер по фронту типа 2 (таймер 5)

Импульсный таймер по спаду типа 2 (таймер 6)

Отличие импульсного таймера по спаду типа 2 от типа 1 в том, что при появлении новых спадов импульса за время работы таймера, происходит перезапуск уставки по времени таймера, т.е. с каждым новым импульсом на входе увеличивается длительность импульса на выходе на время Тимп (рисунок 6.45).

Таймер не отработает при наличии на входе логической единицы во время старта устройства или записи логической программы, как при прямом, так и при инверсном входе.

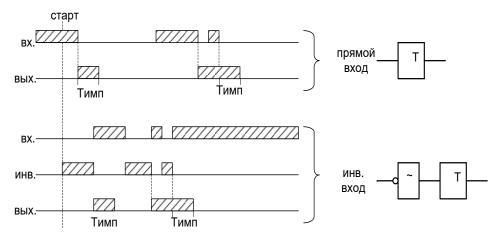


Рисунок 6.45 – Импульсный таймер по спаду типа 2 (таймер 6)

6.7.9 Мультиплексор

Мультиплексор имеет три входа (адресный вход Y и два входа In1 и In2). Переключатель подключает один из входов In1 или In2 к выходу Q, в зависимости от сигнала на адресном входе Y. Если на адресный вход подана единица, то подключается вход In2, если ноль, то вход In1. Объём занимаемой элементом «Мультиплексор» памяти 10 байт.

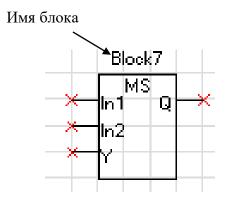


Рисунок 6.46 – Мультиплексор

6.7.10 Текстовый блок

Данный элемент предназначен для создания поясняющего и информационного текста. Текстовый блок не связан логическими связями с остальными элементами графического редактора программы УниКон и поэтому не имеет входов и выходов.

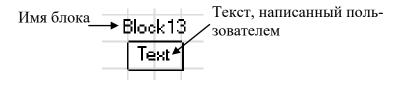


Рисунок 6.47 – Текстовый блок

7 РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

7.1 Органы управления и индикации

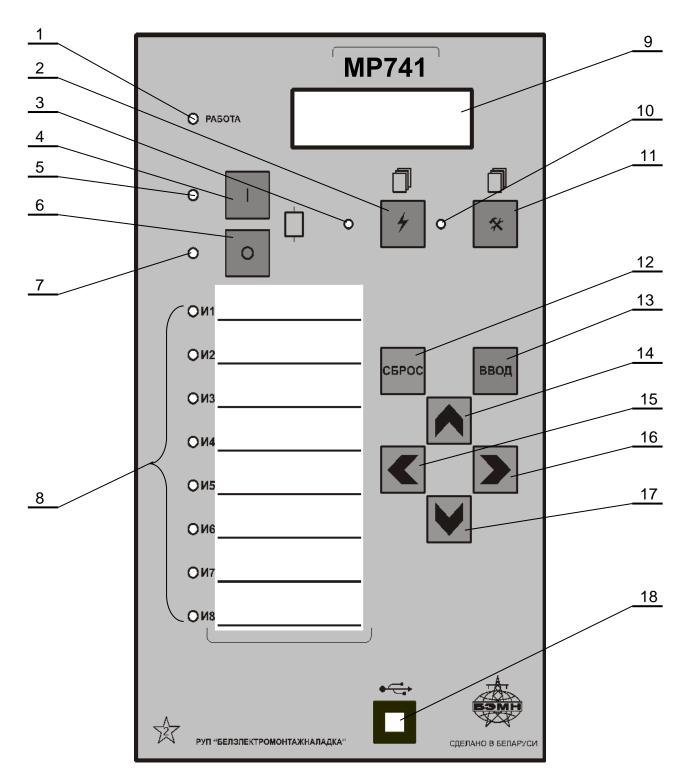


Рисунок 7.1 – Органы управления и индикации МР741

Основным элементом отображения является жидкокристаллический буквенноцифровой индикатор ЖКИ (дисплей), содержащий две строки по 16 символов (позиция 9 на рисунке 7.1).

Информация, которую можно вывести на дисплей, разбита на кадры с фиксированным содержанием. Поочередный просмотр кадров осуществляется с помощью кнопок. Очередность смены кадров на дисплее определяется главным меню и подменю.

В "дежурном" режиме работы подсветка ЖКИ погашена и отображается первый кадр меню. При нажатии на любую кнопку подсветка включается. Если ни одна кнопка не нажимается в течение 3 мин, подсветка гаснет и устройство переходит в "дежурный" режим.

Дополнительно на 13 единичных индикаторах (в дальнейшем - светодиодах) индицируется (см. таблицу 7.1):

Таблица 7.1

таолица /			
Номер позиции на рисун- ке 7.1	Наименование и цвет светодиода	Светодиод горит	Примечание
1	РАБОТА (зелёный или красный)	Зелёным цветом — нормальная работа; Красным цветом — не-исправность (аппаратная)	
3	Авария (красный)	Есть новая запись в жур- нале аварий	Произошло срабатывание защиты
10	Контроль (жел- тый)	Есть новая запись о неис- правности в журнале си- стемы	Возможна неисправность
5	Включено (красный)	Выключатель включен	
7	Отключено (зеле- ный)	Выключатель отключен	
8	8 свободно про- граммируемых светодиодов (зеленый)*		

^{*} Свободно программируемые светодиоды могут работать в режиме повторителя либо блинкера. При работе в режиме блинкера они могут быть сброшены по сигналу на дискретном входе, по команде из меню, по интерфейсу связи, по просмотру журнала аварии или системы. Состояние светодиодов сохраняется при восстановлении оперативного питания

Кнопки управления выполнены на основе плёночной клавиатуры и осуществляют следующие функции:

включение выключателя (поз. 4 на рисунке 7.1);

– отключение выключателя (поз. 6 на рисунке 7.1);

просмотр журнала аварий (поз. 2 на рисунке 7.1);

– просмотр журнала системы (поз. 11 на рисунке 7.1);

 сброс ввода уставки или переход в вышестоящее подменю (поз. 12 на рисунке 7.1);

 ввод значения, вход в подменю или в режим изменения параметра (поз. 13 на рисунке 7.1);

 перемещение по окнам меню верх или увеличение значения уставки (поз. 14 на рисунке 7.1);

 перемещение по окнам меню вправо или перемещение курсора вправо (поз. 16 на рисунке 7.1);

перемещение по окнам меню влево или перемещение курсора влево (поз. 15 на рисунке 7.1);

перемещение по окнам меню вниз или уменьшение значения уставки (поз. 17 на рисунке 7.1).

Позиция 18 на рисунке 7.1 – гнездо разъёма локального интерфейса USB-2.

7.2 Структура меню

Меню защиты имеет древовидную структуру. С помощью ЖКИ пользователь имеет возможность прочитать следующую информацию, расположенную в различных подменю:

- 1. Текущие значения:
- 1.1. Токов:
- 1.1.1. Измеренных по фазным каналам тока;
- 1.1.2. Измеренных по четвёртому каналу тока, основной и высшей гармоник;
- 1.1.3. Расчётных, прямой, обратной и нулевой последовательностей;
- 1.2. Текущие значения напряжений:
- 1.2.1. Измеренных фазных и линейных;
- 1.2.2. Измеренного по четвёртому каналу напряжения;
- 1.2.3. Расчётных, прямой, обратной и нулевой последовательностей;
- 1.3. Текущее значение частоты;
- 2. Сброс индикации;
- 3. Журналы:

Журнал аварий (32 сообщения), который включает в себя:

- дату, время повреждения;
- сработавшую ступень;
- вид повреждения;
- максимальный ток повреждения;
- токи в момент срабатывания защиты;
- состояние входов и выходов;

Журнал системы (включает в себя 128 последовательных во времени сообщения о неисправностях в системе защиты линии. Типы сообщений представлены в п. 8.12);

Журнал осциллограмм;

Сброс журналов;

- 4. Ресурс выключателя;
- 5. Конфигурация устройства;
- 6. Диагностика.

Пользователь имеет возможность произвести изменения в конфигурации системы, введя правильный пароль после внесения изменений в соответствующих подменю.

Внимание! При выходе с производства установлен пароль АААА.

Развернутое изображение структуры меню и последовательность нажатия кнопок управления для вызова того или иного подменю приведены в Приложении 3.

Используемые символы:

< └ े - использование кнопок на передней панели типа:

- продвижение вправо по меню;

- продвижение влево по меню;

использование кнопок на передней панели типа:

продвижение вверх по меню;

продвижение вниз по меню;

использование кнопки «ВВОД».

Для удобства просмотра параметров, пользователь может просмотреть содержание пунктов меню, удерживая выбранную им клавишу. При этом на экране ЖКИ циклически высветятся имеющиеся параметры в выбранном пункте.

Если пользователь при просмотре или изменении параметров не нажимает на кнопки в течение трёх минут, то устройство автоматически переходит в "дежурный" режим, при этом автоматически запрещается режим изменения уставок. Для проведения изменений необходимо заново повторить все действия по вхождению в подменю и изменению значений.

7.3 Просмотр текущих значений измеренных величин

Просмотр значений измеренных величин осуществляется в меню «ИЗМЕРЕНИЕ». Заголовок данного меню является первым кадром и отображает значение тока в фазе А. Просмотр остальных значений осуществляется перемещением из первого кадра согласно структуре меню. Значения токов и напряжений отображаются с учётом коэффициента трансформации трансформаторов тока и трансформаторов напряжений, т. е. показываются реальные величины измеренных величин.

Текущее значение тока фазы А (В, С) и токов Іо, Іг, І1, І2, І0, где

- Io основная гармоника тока (нулевой последовательности), измеренного по четвёртому каналу тока;
- Ir высшая гармоника тока (нулевой последовательности), измеренного по четвёртому каналу тока;
 - I1 расчетный ток прямой последовательности;
 - I2 расчетный ток обратной последовательности;
 - 10 расчетный ток нулевой последовательности.

Знак «+» или «-» перед числовым значением тока показывает направление мощности: «+» - от шин, «-» к шинам.

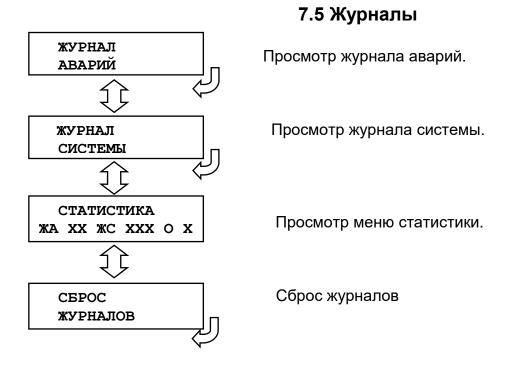
Текущее значение напряжения фазы A (B, C), линейных напряжений AB, BC, CA, напряжений U1, U2, U0, Un, где

- U1 расчётное напряжение прямой последовательности;
- U2 расчётное напряжение обратной последовательности:
- U0 расчётное напряжение нулевой последовательности;
- Un измеренное напряжение (нулевой последовательности) по четвёртому каналу напряжения.

Текущее значение частоты.

Текущее значение активной трёхфазной мощности (в кВт или МВт).

Текущее значение реактивной трёхфазной мощности (в квар или Мвар).

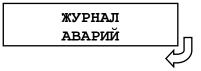

Значение параметра соѕф.

7.4 Сброс индикации

Для сброса индикации необходимо войти в меню:

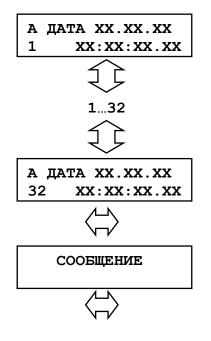
После сброса индикации, т.е. нажатия «ВВОД», выводится сообщение о выполнении сброса.

7.5.1 Просмотр журнала аварий


При обнаружении аварии на защищаемой линии устройство сохраняет информацию о дате и времени аварии, сработавшей ступени, виде повреждения и максимальном токе повреждения, автоматически делая запись в журнале аварий.

В журнале может храниться до 32 аварий. При превышении этого числа, каждая новая авария будет записываться на место самой старой аварии.

Расшифровка индицируемых видов повреждения защищаемой линии:


_ABC	Трёхфазное КЗ на землю
ABC	Трёхфазное КЗ
A C	Двухфазное КЗ между фазами А и С
_A C	Двойное КЗ на землю между фазами А и С
AB	Двухфазное КЗ между фазами А и В
_AB	Двойное КЗ на землю между фазами А и В
ВС	Двухфазное КЗ между фазами В и С
BC	Двойное КЗ на землю между фазами В и С

Для просмотра параметров аварий необходимо войти в меню:

На дисплее отобразится заголовок аварии с датой, временем и номером аварии (отсчет ведется от последней аварии).

Содержание журнала по выбранной аварии:

Последняя авария.

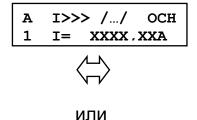
Самая «старая» авария.

Типы сообщений журнала аварий:

«ЖУРНАЛ ПУСТ» - нет сообщений в журнале;

«СИГНАЛИЗАЦИЯ» - работа защиты в схему сигнализации:

«ОТКЛЮЧЕНИЕ» - работа защиты на отключение выключателя;

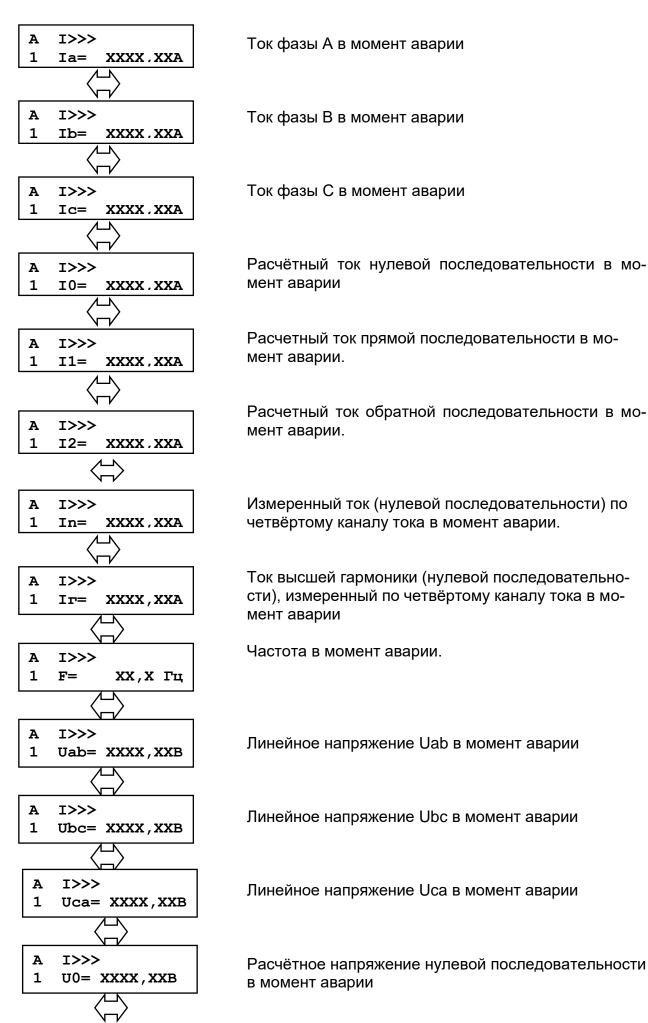

«РАБОТА» - сработала ступень защиты, работа на отключение блокирована другой ступенью (сработавшей ранее);

«НЕУСПЕШНОЕ АПВ» - произошло отключение зашитами после АПВ:

«ВОЗВРАТ» - произошло АПВ по возврату;

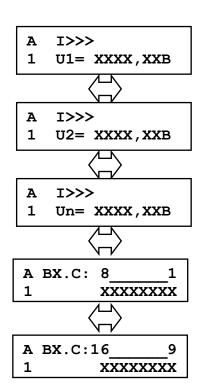
«ВКЛЮЧЕНИЕ» - включение;

«ОПРЕДЕЛЕНИЕ МЕСТА ПОВРЕЖДЕНИЯ».


Сработавшая ступень защиты, вид повреждения, группа уставок.

Максимальное (для максимальных защит) или минимальное (для минимальных защит) значение контролируемого параметра за время с момента превышения уставки до срабатывания защиты.

A OMII ABC OCH


1 LKB = XX.XX KM

Расстояние до места повреждения

МР741 редакция 6.04 ОАО «Белэлектромонтажналадка», Минск 74

www.bemn.by upr@bemn.by

Расчётное напряжение прямой последовательности в момент аварии

Расчётное напряжение обратной последовательности в момент аварии

Измеренное по четвёртому каналу напряжение (напряжение нулевой последовательности)

Состояния дискретных входов Д1-Д8 в момент аварии.

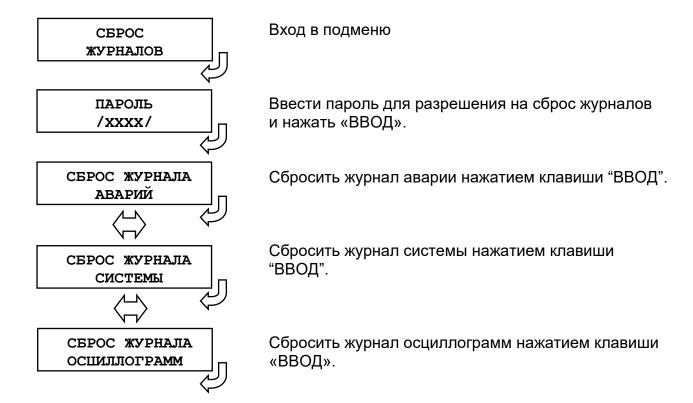
Состояния дискретных входов Д9-Д16 в момент аварии


7.5.2 Просмотр журнала системы

Для просмотра журнала войти в меню:

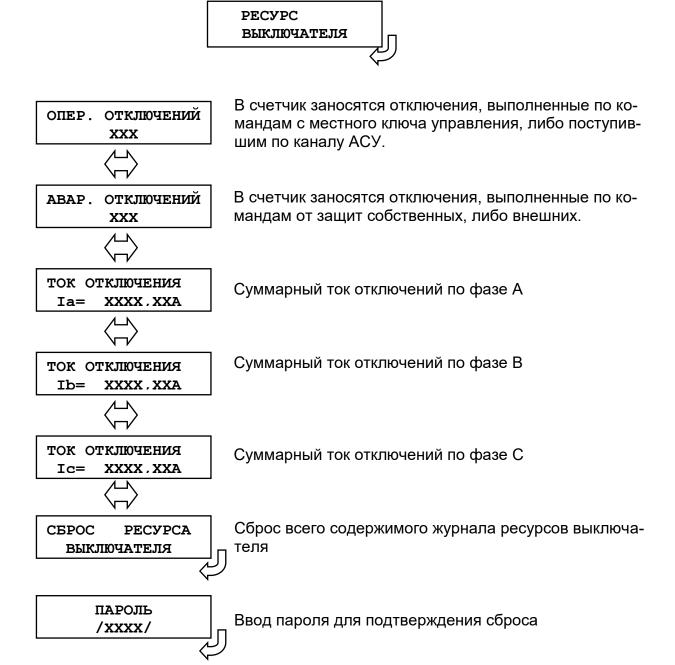
На дисплее отобразится заголовок события с датой, временем и порядковым номером. Нажатием соответствующих кнопок просмотреть сообщение.

Журнал системы содержит до 128 сообщений о событиях в системе, таких, как: неисправности, включение и отключение выключателя и т.д. При возникновении события устройство сохраняет в журнале информацию о дате и времени сообщения о событии.

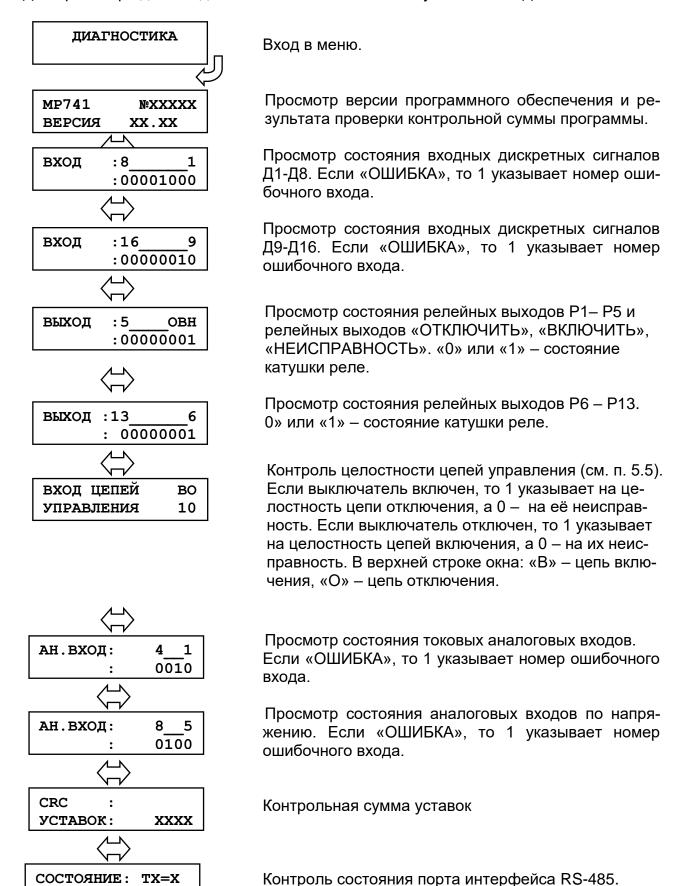

Перечень сообщений приводится в Приложении 3.

7.5.3 Меню статистика

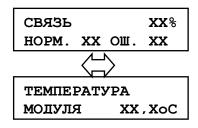
В меню "СТАТИСТИКА" указанно количество событий в журнале аварий (ЖА), журнале системы (ЖС) и количество осциллограмм (О).



7.5.4 Сброс журналов


7.6 Просмотр журнала ресурса выключателя

Для просмотра журнала войти в меню:


7.7 Диагностика

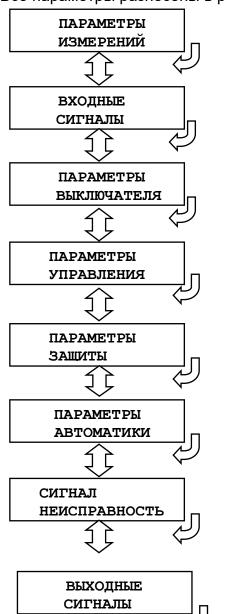
Для просмотра данных диагностики системы используется меню «ДИАГНОСТИКА».

: RX=X

ПОРТА

Контроль качества (ошибок) связи.

Температура процессора (в °C).


7.8 Конфигурирование системы

Изменение и просмотр конфигурации системы осуществляется в меню:

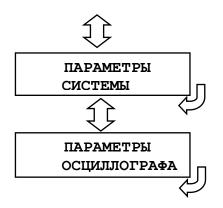
Информация в данном меню всегда доступна для просмотра. В случае внесения каких-либо изменений при выходе из меню "КОНФИГУРАЦИЯ УСТРОЙСТВА" будет запрошен пароль. При вводе правильного пароля изменения вступят в силу.

Все параметры разнесены в различные подменю:

Параметры каналов измерения токов и напряжений. конфигурирование ускорения защит, управления выключателем.

Параметры логических сигналов, сигналов управления выключателем, сброса индикации и переключения уставок.

Конфигурирование входов, определяющих положение выключателя, УРОВ и ускорения защит.


Конфигурирование параметров управления выключателем.

Конфигурирование защит токовых, напряжения и частоты, выбор группы уставок.

Конфигурирование автоматики АПВ, ЛЗШ, АВР, внешних защит.

Конфигурирование реле «НЕИСПРАВНОСТЬ»

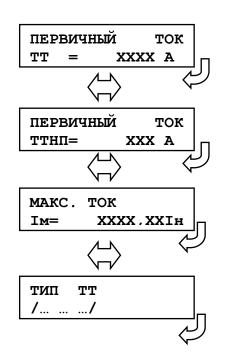
Назначение выходных логических сигналов, релейных выходов и индикаторов.

Установка даты и времени, параметров обмена, изменение пароля.

Установка режима работы осциллографа

Для редактирования параметра необходимо вызвать соответствующий кадр и нажать кнопку "ВВОД". При этом под изменяемой цифрой (под всем параметром) появляется курсор. Использованием кнопок "ВЛЕВО", "ВПРАВО", "ВВЕРХ", "ВНИЗ" производится изменение значения. По окончании редактирования нажать кнопку "ВВОД".

7.8.1 Подменю «ПАРАМЕТРЫ ИЗМЕРЕНИЙ»

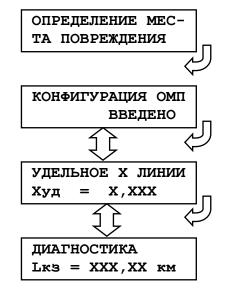


7.8.1.1 Подменю «ПАРАМЕТРЫ НАПРЯЖЕНИЯ»

тельности). Список сигналов в приложении 3.

7.8.1.2 Подменю «ПАРАМЕТРЫ ТОКА»

Номинальный первичный ток фазного трансформатора тока


Номинальный первичный ток трансформатора тока нулевой последовательности.

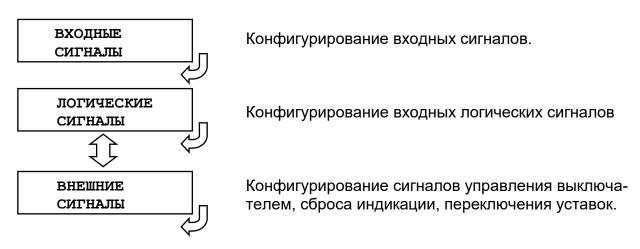
Максимальная нагрузка. Рекомендуется задавать как у ступени максимальной токовой защиты с минимальной уставкой по току. **Важно!** Используется для определения типа повреждения.

Схемы подключения МР741:

Ia, Ib, Ic – схема с тремя трансформаторами тока; Ia, Ic – схема с двумя трансформаторами тока. Данный параметр используется при расчёте активной и реактивной мощности.

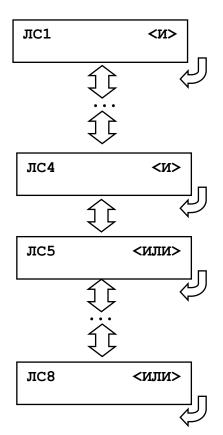
7.8.1.3 Подменю «ОПРЕДЕЛЕНИЕ МЕСТА ПОВРЕЖДЕНИЯ»

Вход в подменю


Выбор режима:

«ВВЕДЕНО» – ОМП введено в работу; «ВЫВЕДЕНО» – ОМП выведено из работы.

Задание удельного индуктивного сопротивления линии (Худ). Значение параметра – от 0 до 2 Ом/км.


Кадр диагностики ОМП. Отображает текущее расчётное значение расстояния согласно текущим параметрам сети. Значение параметра – от 0 до 256 км.

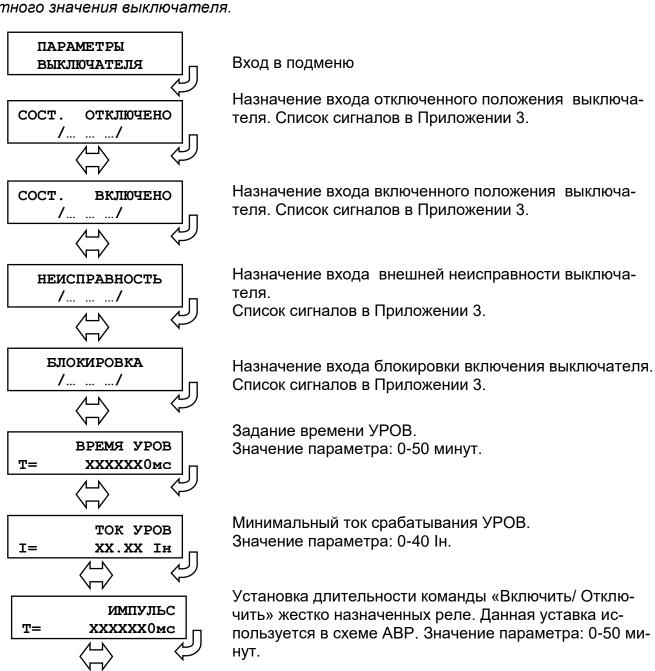
7.8.2 Подменю «ВХОДНЫЕ СИГНАЛЫ»

7.8.2.1 Подменю «ЛОГИЧЕСКИЕ СИГНАЛЫ»

После входа в подменю «ЛОГИЧЕСКИЕ СИГНАЛЫ» откроется подменю с 8 логическими сигналами (ЛС).

ЛС могут быть запрограммированы как сумма входных дискретных сигналов Д1-Д16 и Д1ИНВ — Д16 ИНВ:

- ЛС1-ЛС4 по логике «И»;
- ЛС5-ЛС8 по логике «ИЛИ».


7.8.2.2 Подменю «ВНЕШНИЕ СИГНАЛЫ»

7.8.3 Подменю «ПАРАМЕТРЫ ВЫКЛЮЧАТЕЛЯ»

«ВЫКЛЮЧАТЕЛЬ» В подменю задаются параметры выключателя. Пункт «НЕИСПРАВНОСТЬ» может быть использован для контроля привода выключателя (Например, для выключателей с контролем исправности привода). При подаче сигнала на выбранный вход производится запись в журнал системы, блокируется включение выклюсрабатывает реле «НЕИСПРАВНОСТЬ». При подаче сигнала вход «БЛОКИРОВКА» блокируется включение выключателя. Срабатывания реле «НЕИСПРАВНОСТЬ» не происходит.

Важно! По истечении заданного времени УРОВ (устройство резервирования отказа выключателя) после выдачи команды на отключение выключателя запускается задача УРОВ. Время отключения должно быть задано не менее максимального паспортного значения выключателя.

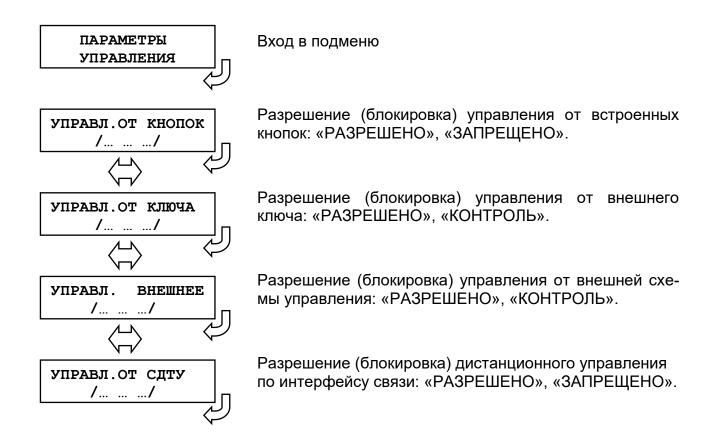
ДЛИТ-СТЬ УСКОР

T=

XXXXXX0_{MC}

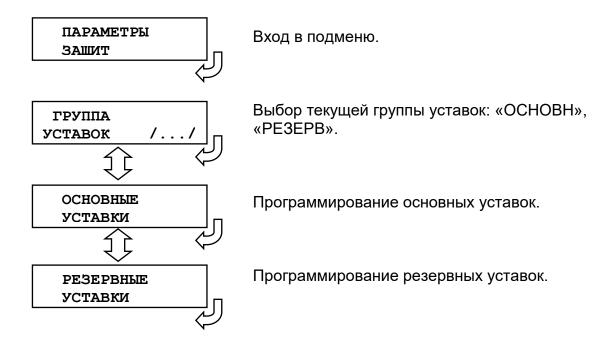
Длительность ускоренного режима после включения

выключателя. Значение параметра: 0-50 минут.

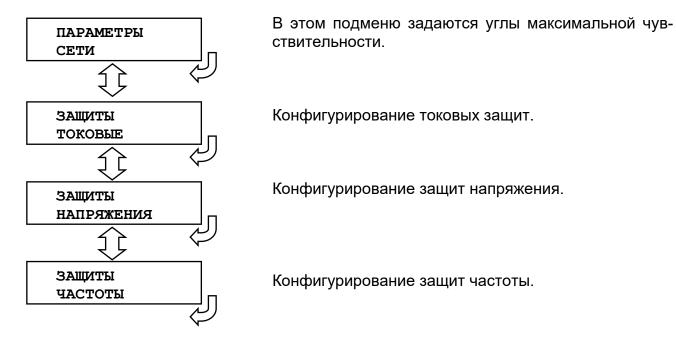


Контроль цепей управления. Значения параметра:

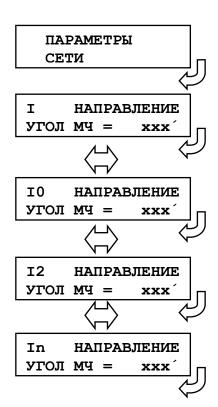
- «ВВЕДЕНО»;
- «ВЫВЕДЕНО»


7.8.4 Подменю «ПАРАМЕТРЫ УПРАВЛЕНИЯ»

В подменю «УПРАВЛЕНИЕ» выбираются режимы управления выключателем. Управление выключателем может осуществляться четырьмя способами: от встроенных кнопок «ВКЛ/ ОТКЛ», от внешнего ключа управления, от внешней схемы (например, АВР, телемеханика), по интерфейсу связи.


7.8.5 Подменю «ПАРАМЕТРЫ ЗАЩИТ»

После входа в подменю «ПАРАМЕТРЫ ЗАЩИТ» необходимо выбрать группу уставок: основные или резервные. Программирование групп основных и резервных уставок ничем не отличается, поэтому ниже рассмотрим подменю основных уставок. Подменю выглядит следующим образом:

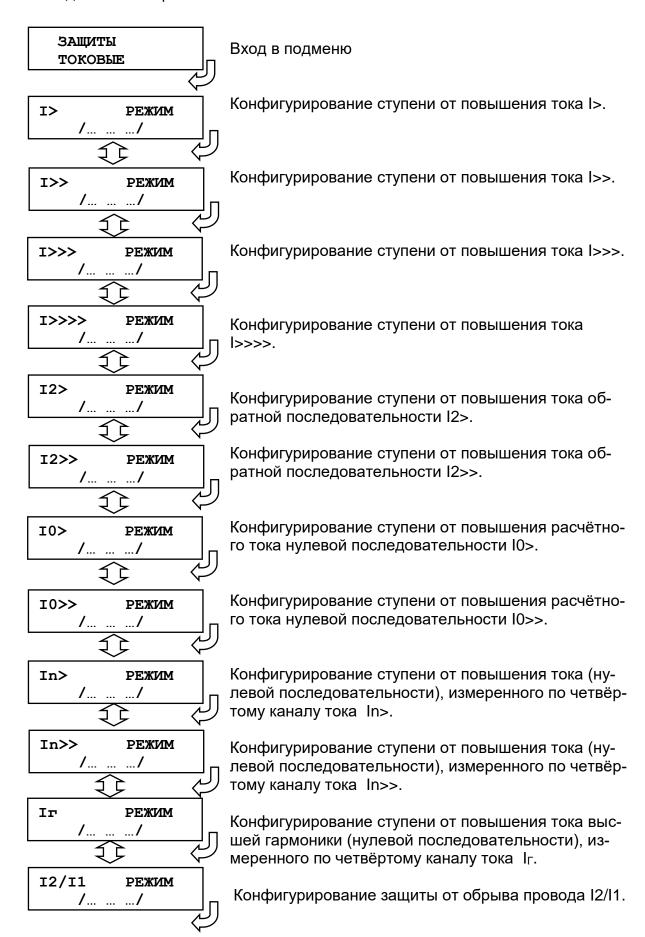


7.8.5.1 Подменю «ОСНОВНЫЕ УСТАВКИ» («РЕЗЕРВНЫЕ УСТАВКИ»)

Подменю «ОСНОВНЫЕ УСТАВКИ» и «РЕЗЕРВНЫЕ УСТАВКИ» идентичны и имеют следующий вид:

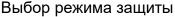
7.8.5.2 Подменю «ПАРАМЕТРЫ СЕТИ»

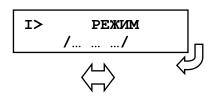
Вход в подменю.


Выбор угла максимальной чувствительности для защит от повышения тока. Значение параметра: 0-360°.

Выбор угла максимальной чувствительности для ступеней защиты от повышения тока нулевой последовательности I0>, I0>>. Значение параметра: 0-360°.

Выбор угла максимальной чувствительности для защит от повышения тока обратной последовательности. Значение параметра: 0-360°.

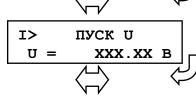

Выбор угла максимальной чувствительности для ступеней защиты от повышения тока нулевой последовательности In>, In>>. Значение параметра: 0-360°.


7.8.5.3 Подменю «ЗАЩИТЫ ТОКОВЫЕ»

7.8.5.3.1 Конфигурирование защит I, I2, I0, In

Ввиду того, что ступени токовых защит І, І2, І0, Іп идентичны между собой, рассмотрим настройку ступени от повышения тока I>.

«ВЫВЕДЕНА» – защита выведена из работы; «ВВЕДЕНА» – защита введена в работу с контролированием уставки по времени. Отключение выключателя и действия на сигнализацию не происходит; «СИГНАЛИЗАЦИЯ» – как при «ВВЕДЕНА», но с действием в схему сигнализации и записью в журнал аварий;


«ОТКЛЮЧЕНИЕ» – как при «СИГНАЛИЗАЦИЯ» плюс действие на отключение выключателя;

Ввод блокирующего сигнала. Список сигналов в приложении 3.

Пуск по напряжению.

Значение параметра: «ЕСТЬ», «НЕТ».

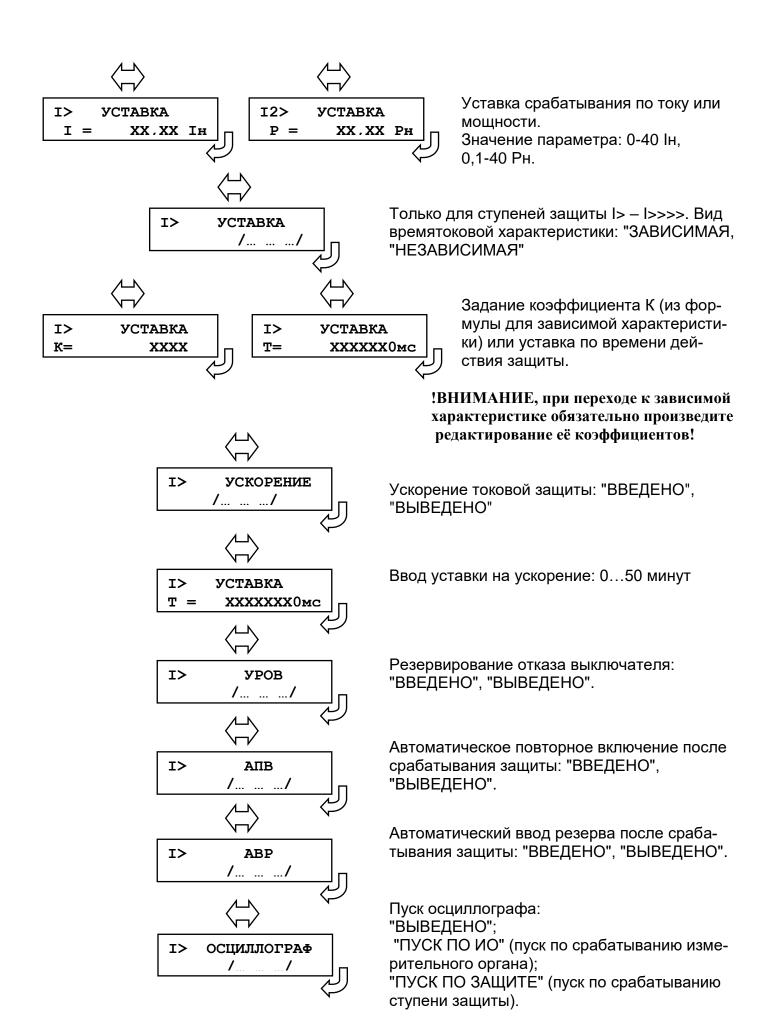
Уставка по напряжению. Этот кадр появляется, если пуск по напряжению «ЕСТЬ».

Значение параметра: 0-256 В.

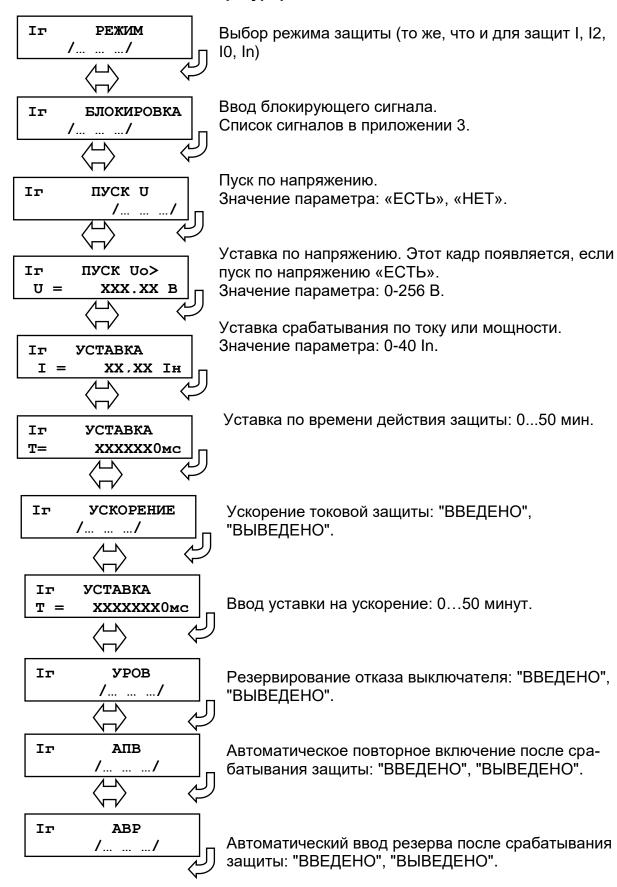
Выбор направленности действия защиты. Значение параметра: «НЕТ», «ОТ ШИН», «К ШИНАМ».

Выбор режима работы защиты при недостоверном определении направления. Этот кадр появляется при выборе направленного действия защиты («ОТ ШИН» или «К ШИНАМ»)

Значение параметра: «НЕНАПРАВ-Я», «БЛОКИРОВКА».


Логика работы и выбор контролируемого тока:

для І: «ОДНА ФАЗА», «ВСЕ ФАЗЫ»;


для I2: «ТОК», «МОЩНОСТЬ»;

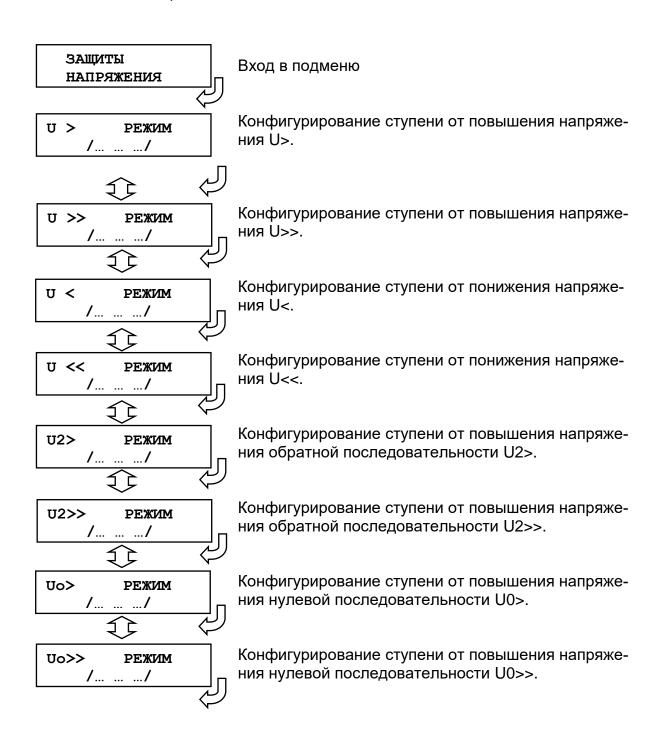
для I0: «ТОК», «МОЩНОСТЬ»;

для In: «ТОК», «МОЩНОСТЬ».

7.8.5.3.2 Конфигурирование защиты Іг


Пуск осциллографа:

"ВЫВЕДЕНО";


"ПУСК ПО ИО" (пуск по срабатыванию измерительного органа);

"ПУСК ПО ЗАЩИТЕ" (пуск по срабатыванию ступени защиты).

7.8.5.3.3 Конфигурирование защиты 12/11

7.8.5.4 Подменю «ЗАЩИТЫ НАПРЯЖЕНИЯ»

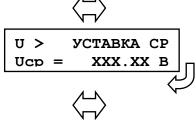
7.8.5.4.1 Конфигурирование защит U>, U>>, U<, U<>, U2>, U2>>, Uo>, Uo>>

Ввиду того, что ступени защит U, U2, Uо идентичны между собой, рассмотрим настройку ступени от повышения напряжения U>.

Выбор режима защиты

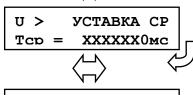
«ВЫВЕДЕНА» — защита выведена из работы; «ВВЕДЕНА» — защита введена в работу с контролированием уставки по времени. Отключение выключателя и действия на сигнализацию не происходит; «СИГНАЛИЗАЦИЯ» — как при «ВВЕДЕНА», но с действием в схему сигнализации и записью в журнал аварий;

«ОТКЛЮЧЕНИЕ» – как при «СИГНАЛИЗАЦИЯ» плюс действие на отключение выключателя;


Ввод блокирующего сигнала. Список сигналов в приложении 3.

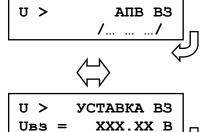
Логика работы и выбор контролируемого напряжения. Значение параметра:

для защит по полному напряжению U:«ОДНА ФАЗА», «ВСЕ ФАЗЫ», «ОДНО ЛИНЕЙНОЕ», «ВСЕ ЛИНЕЙНЫЕ», «Un»;

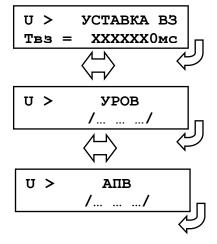

для ступеней U2: «U2»;

для ступеней Uo: «U0» (расчетное), «Un» (измеренное).

Уставка срабатывания.

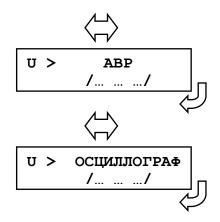

Значение параметра: 0-256 В.

Уставка по времени действия защиты на срабатывание: 0-50 мин.


Возврат по уставке: "ДА", "НЕТ".

Автоматическое повторное включение по возврату: «ДА», «НЕТ». ВНИМАНИЕ! АПВ по возврату возможно только при разрешенном АПВ (см. ниже).

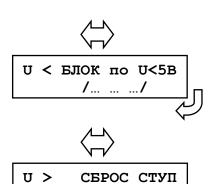
Уставка на возврат.


Значение параметра: 0-256 В.

Уставка по времени на возврат: 0-50 мин.

Резервирование отказа выключателя: "ВВЕДЕНО", "ВЫВЕДЕНО".

Разрешение на автоматическое повторное включение после срабатывания защиты: "ВВЕДЕНО", "ВЫВЕДЕНО". ВНИМАНИЕ! При разрешенном АПВ и значении параметра АПВ ВЗ "ВВЕДЕНО" для ступени будет введено только АПВ по возврату. При разрешённом АПВ и значении параметра АПВ ВЗ "ВЫВЕДЕНО" для ступени будет введено только «обычное» АПВ, настраиваемое в меню АВТОМАТИКА.

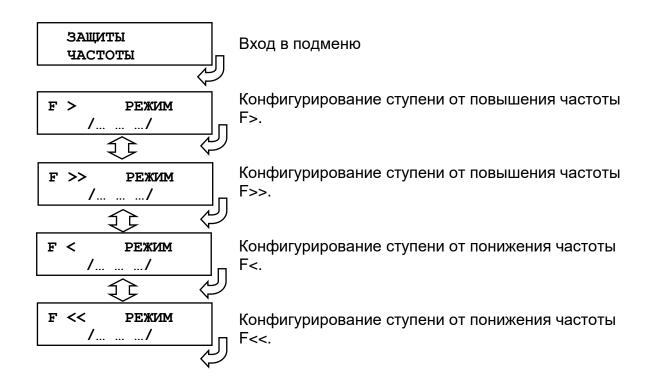

Автоматический ввод резерва после срабатывания защиты: "BBEДEHO", "BЫВЕДЕНО".

Пуск осциллографа:

"ВЫВЕДЕНО";

"ПУСК ПО ИО" (пуск по срабатыванию измерительного органа);

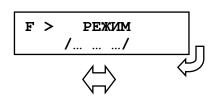
"ПУСК ПО ЗАЩИТЕ" (пуск по срабатыванию ступени защиты).


Ввод блокировки ступеней защиты U<; U<< при снижении напряжения до уровня менее 5 В: "ВВЕДЕНО",

"ВЫВЕДЕНО".

ВНИМАНИЕ! Данная опция возможна только для ступеней защит U<, U<<.

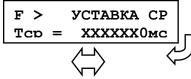
Разрешить сброс ступени с возвратом по операциям с выключателем (от ключа, от внешнего, от кнопок, от СДТУ) до появления фактора возврата: «ДА», «НЕТ» (с версии ПО 1.14).


7.8.5.5 Подменю «ЗАЩИТЫ ЧАСТОТЫ»

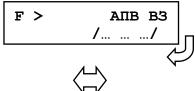
7.8.5.5.1 Конфигурирование защит по частоте

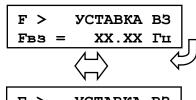
Ввиду того, что ступени защит по частоте идентичны между собой, рассмотрим настройку ступени от повышения частоты F>.

«ВЫВЕДЕНА» — защита выведена из работы; «ВВЕДЕНА» — защита введена в работу с контролированием уставки по времени. Отключение выключателя и действия на сигнализацию не происходит; «СИГНАЛИЗАЦИЯ» — как при «ВВЕДЕНА», но с действием в схему сигнализации и записью в журнал аварий;


«ОТКЛЮЧЕНИЕ» – как при «СИГНАЛИЗАЦИЯ» плюс действие на отключение выключателя;

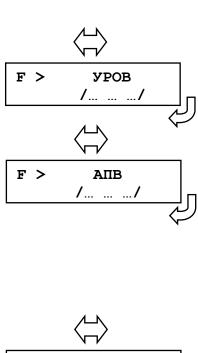
Ввод блокирующего сигнала. Список сигналов в приложении 3.


Уставка срабатывания. Значение параметра: 40-60 Гц.


Уставка по времени действия защиты на срабатывание: 0-50 мин.

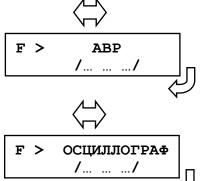
Возврат по уставке: "ДА", "НЕТ".

Автоматическое повторное включение по возврату: «ДА», «НЕТ». ВНИМАНИЕ! АПВ по возврату возможно только при разрешенном АПВ (см. ниже).



Уставка на возврат.

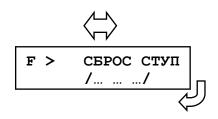
Значение параметра: 40-60 Гц.



Уставка по времени на возврат: 0-50 мин.

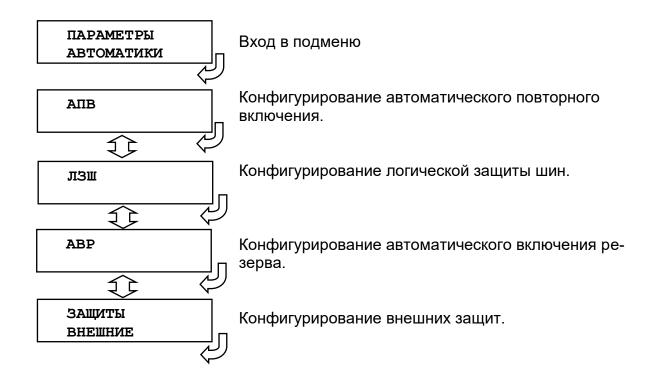
Резервирование отказа выключателя: "ВВЕДЕНО", "ВЫВЕДЕНО".

Разрешение на автоматическое повторное включение после срабатывания защиты: "ВВЕДЕНО", "ВЫВЕДЕНО". ВНИМАНИЕ! При разрешенном АПВ и значении параметра АПВ ВЗ "ВВЕДЕНО" для ступени будет введено только АПВ по возврату. При разрешённом АПВ и значении параметра АПВ ВЗ "ВЫВЕДЕНО" для ступени будет введено только «обычное» АПВ, настраиваемое в меню АВТОМАТИКА.

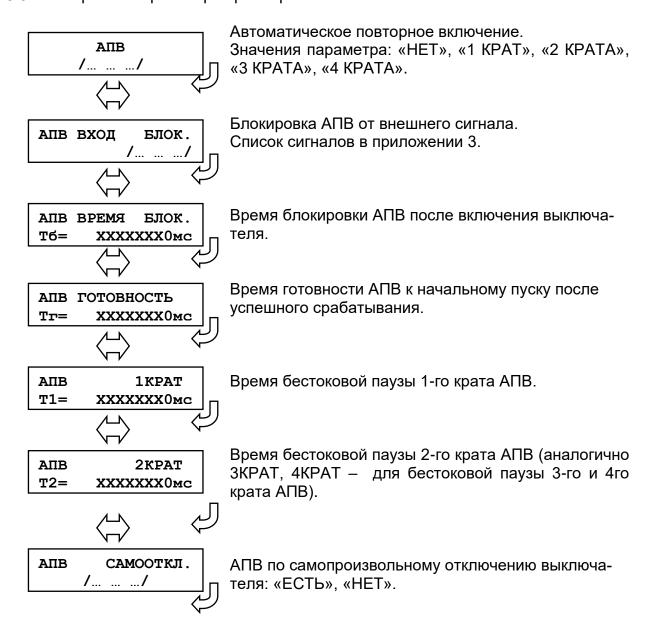

Автоматический ввод резерва после срабатывания защиты: "BBEДЕНО", "BЫВЕДЕНО".

Пуск осциллографа:

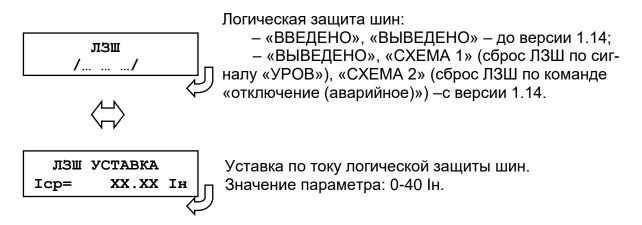
"ВЫВЕДЕНО";


"ПУСК ПО ИО" (пуск по срабатыванию измерительного органа);

"ПУСК ПО ЗАЩИТЕ" (пуск по срабатыванию ступени защиты).



Разрешить сброс ступени с возвратом по операциям с выключателем (от ключа, от внешнего, от кнопок, от СДТУ) до появления фактора возврата: «ДА», «НЕТ» (с версии ПО 1.14).


7.8.6 Подменю «ПАРАМЕТРЫ АВТОМАТИКИ»

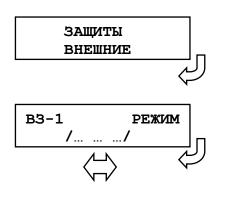
7.8.6.1 Настройка и просмотр параметров АПВ

7.8.6.2 Подменю «ЛЗШ»

7.8.6.3 Настройка и просмотр параметров АВР

Сброс блокировки ABP, возврат схемы ABP в начальный шаг по включению/отключению выключателя. Значение параметра: «ЗАПРЕЩЕНО», «РАЗРЕШЕНО».

Важно! Наличие сигнала возврата ABP после подачи команды на отключение резервного питания (после истечения времени импульса включения/отключения — меню «ВЫКЛЮЧАТЕЛЬ») является признаком неуспешного возврата схемы ABP. При этом происходит отключение собственного выключателя и блокировка схемы ABP.


Важно! Внешний сигнал блокировки или неуспешная работа ввода или возврата АВР приводят к фиксации блокировки схемы АВР. При этом в «ЖУРНАЛЕ СИСТЕМЫ» формируется запись о причине и срабатывает сигнал «БЛОКИРОВКА АВР». Сброс блокировки АВР и возврат схемы в нормальный режим происходит путем подачи команды на управление выключателем (при заданном разрешении в конфигурации АВР) или по внешнему сигналу «СБРОС».

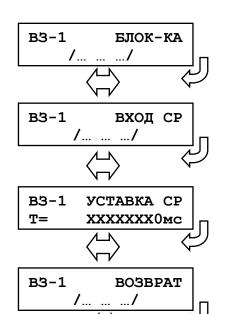
Важно! В состав сигнала «СРАБАТЫВАНИЕ» АВР должен входить сигнал отключенного положения выключателя ввода резервного питания (например, секционного выключателя). В состав сигнала возврата АВР должен входить сигнал включенного положения выключателя ввода резервного питания (например, секционного выключателя). Данные сигналы могут собираться как на внешней контактной логике, так и на входном логическом сигнале по «И».

7.8.6.4 Подменю «ЗАЩИТЫ ВНЕШНИЕ»

В устройстве имеется возможность работы с внешними защитами. Всего есть возможность подключить до восьми внешних защит ВЗ-1, ВЗ-2,.... ВЗ-8. Логика работы с внешней защитой запускается при появлении сигнала на заданном дискретном входе. При срабатывании внешних защит фиксируются все параметры аварийного события, как при срабатывании собственных защит.

Программирование всех внешних защит одинаково, поэтому далее рассмотрены настройки по внешней защите №1:

Вход в подменю


Выбор режима защиты

"ВЫВЕДЕНА" – защита выведена из работы;

"СРАБАТЫВАНИЕ" – защита введена в работу на срабатывание. Отключение выключателя и действия на сигнализацию не происходит;

"СИГНАЛИЗАЦИЯ" – как при "СРАБАТЫВАНИЕ", но с действием в схему сигнализации и записью в журнал аварий;

"ОТКЛЮЧЕНИЕ" – как при "СИГНАЛИЗАЦИЯ" плюс действие на отключение выключателя;

апв вз

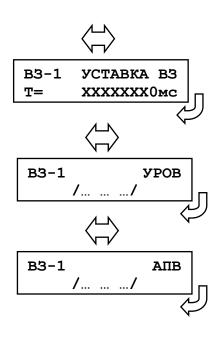
вход вз

Ввод блокирующего сигнала. Список сигналов в приложении 3.

Номер входа срабатывания внешней защиты Список сигналов в приложении 3.

Уставка по времени срабатывания внешней защиты: 0-50 минут.

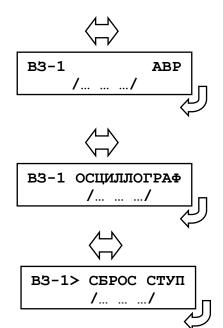
Возврат по уставке: «ДА», «НЕТ».


Автоматическое повторное включение по возврату: «ДА», «НЕТ». ВНИМАНИЕ! АПВ по возврату возможно только при разрешенном АПВ (см. ниже).

Номер входа возврата внешней защиты. Список сигналов в приложении 3.

/.../

B3-1


B3-1

Уставка по времени на возврат внешней защиты: 0-50 минут.

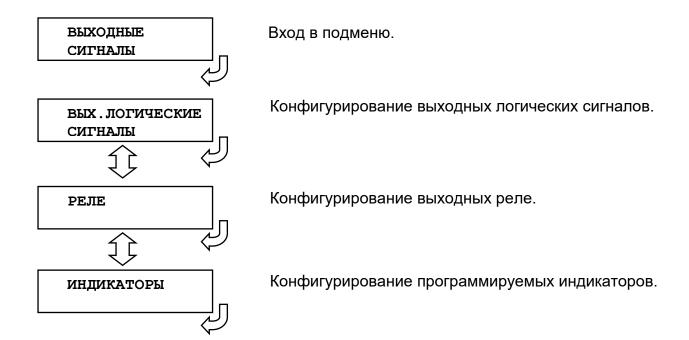
Резервирование отказа выключателя по срабатыванию защиты: "ВВЕДЕНО", "ВЫВЕДЕНО".

Разрешение на автоматическое повторное включение после срабатывания защиты: "ВВЕДЕНО", "ВЫВЕДЕНО". ВНИМАНИЕ! При разрешенном АПВ и значении параметра АПВ ВЗ "ВВЕДЕНО" для ступени будет введено только АПВ по возврату. При разрешённом АПВ и значении параметра АПВ ВЗ "ВЫВЕДЕНО" для ступени будет введено только «обычное» АПВ, настраиваемое в меню АВТОМАТИКА.

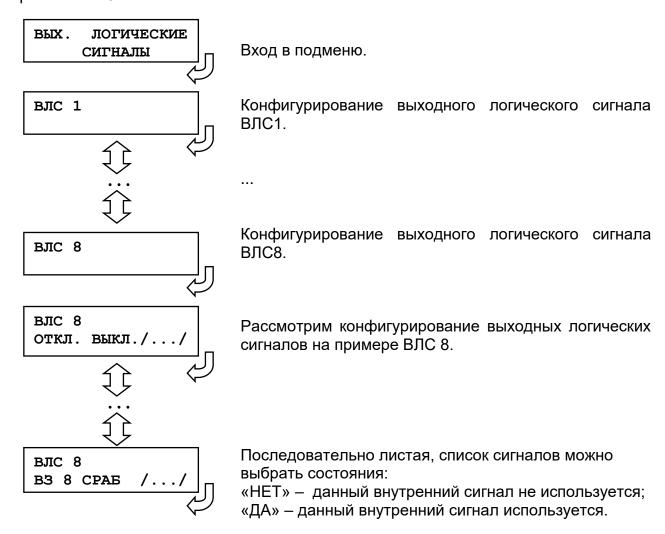
Автоматическое включение резерва включение после срабатывания защиты: "ВВЕДЕНО", "ВЫВЕДЕНО".

Пуск осциллографа по срабатыванию ступени защиты: "ВВЕДЕНО", "ВЫВЕДЕНО".

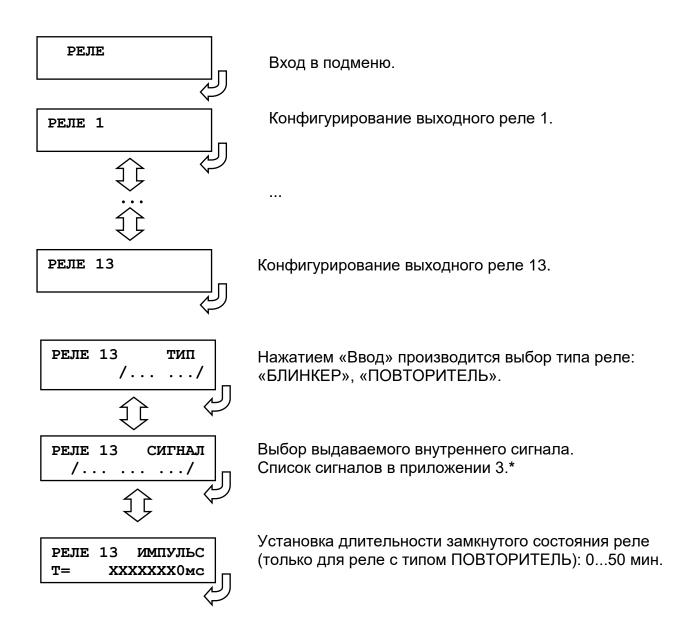
Разрешить сброс ступени с возвратом по операциям с выключателем (от ключа, от внешнего, от кнопок, от СДТУ) до появления фактора возврата: «ДА», «НЕТ» (с версии ПО 1.14).


7.8.7 Подменю «СИГНАЛ НЕИСПРАВНОСТЬ»

Реле «НЕИСПРАВНОСТЬ» - это жестко назначенное реле. Служит для контроля состояния устройства.

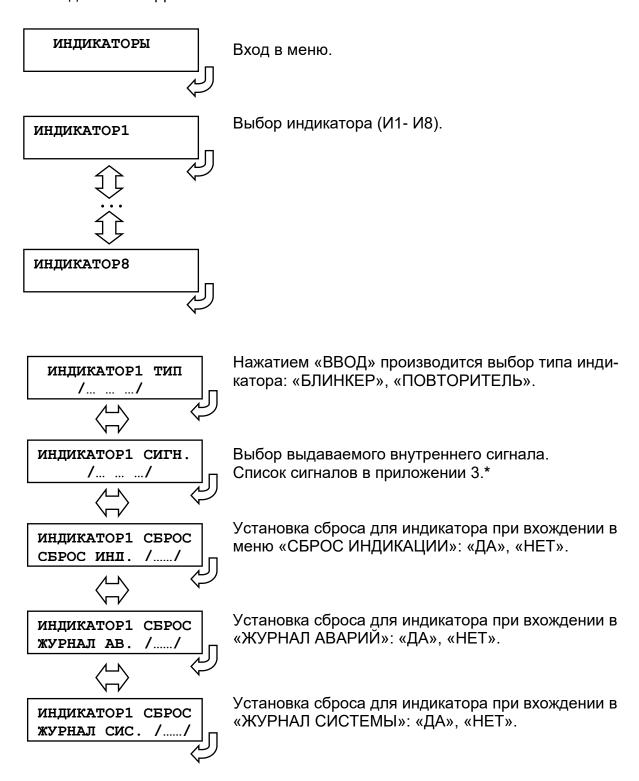

фазах ниже 10 В» или «частота вне диапазона», или «ТН неисправность»): РАЗРЕШЕНО, ЗАПРЕЩЕНО.

7.8.8 Подменю «ВЫХОДНЫЕ СИГНАЛЫ»



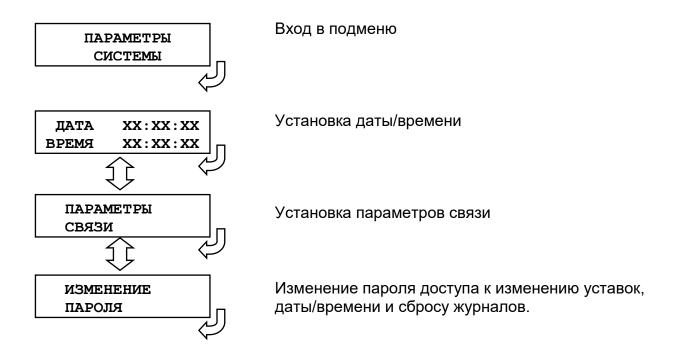
7.8.8.1 Подменю «ВЫХ. ЛОГИЧЕСКИЕ СИГНАЛЫ»

Устройство имеет 8 выходных логических сигналов. Каждый выходной логический сигнал программируется как сумма внутренних сигналов по логике «ИЛИ». Список сигналов в приложении 3.



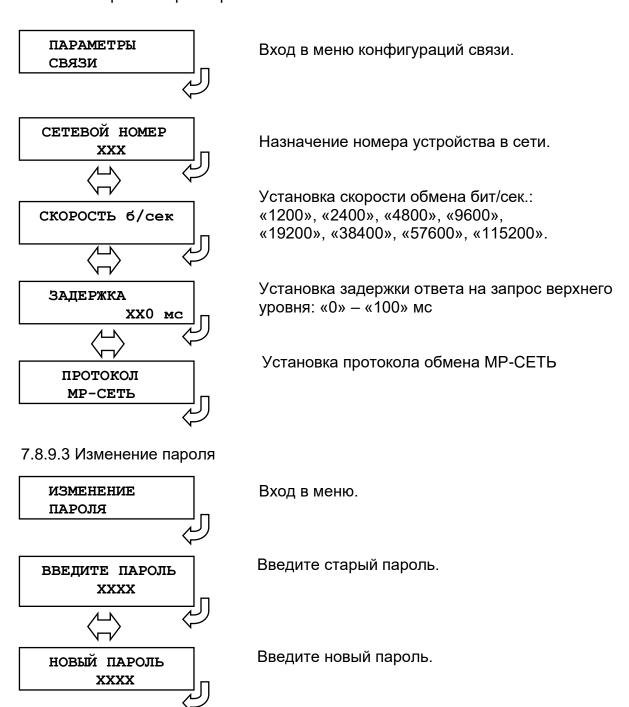
7.8.8.2 Подменю «РЕЛЕ»

^{*} Сигналы возврата для ступеней U>, U>>, U<, U<<, U0>, U0>>, U2>>, F>, F>>, F<, F<<, (типа «U> возврат», «U> возврат <ИНВ>» и т.д.) формируются только, если по этим ступеням введена уставка на возврат (сигналы возврата представляют собой импульсные сигналы длительностью 10 мс).

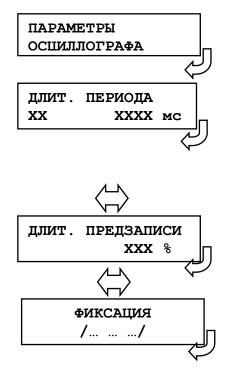

7.8.8.3 Подменю «ИНДИКАТОРЫ»

^{*} Сигналы возврата для ступеней U>, U>>, U<, U<<, U0>, U0>>, U2>>, F>, F>>, F<, F<< (типа «U> возврат», «U> возврат <ИНВ>» и т.д.) формируются только, если по этим ступеням введена уставка на возврат (сигналы возврата представляют собой импульсные сигналы длительностью 10 мс).

7.8.9 Подменю «ПАРАМЕТРЫ СИСТЕМЫ»


В данном подменю производится установка текущих даты и времени, параметров связи и параметров управления.

7.8.9.1 Просмотр и установка реального времени


7.8.9.2 Настройка параметров связи

7.8.10 Параметры осциллографа

В устройстве предусмотрена возможность осциллографирования. Осциллографирование запускается в случае срабатывания защиты с введённой функцией «ОСЦИЛЛОГРАФ». Осциллограф фиксирует 8 аналоговых и 16 входных дискретных сигналов.

1) Подменю "Параметры осциллографа» с версиями 1.15 – 1.17 и 2.00; 2.01 ПО

Вход в подменю

Длительность осциллограммы. Значения параметра в соответствии с таблицей 7.2.

Пример (для МР741 с версии 2.00 ПО): «13 4608» – тринадцать перезаписываемых

осциллограмм, длительность записи каждой: 4608 мс.

Длительность записи до аварии (tпредзаписи на рисунке 7.2), в процентах от общей длительности записи. Значение параметра: от 0 до 99 %.

Значения параметра «Фиксация»:

- а) «По первой аварии» (см. рисунок 7.2б);
- б) «По последней аварии» (см. рисунок 7.2в).

Таблица 7.2

ями ПО	с верси- О 1.15 – 17			MP741	с версия	іми ПО 2.	00; 2.01		
Коли-	Длитель-	Коли-	Длитель-	Коли-	Длитель-	Коли-	Длитель-	Коли-	Длитель-
чество*	ность*	чество*	ность*	чество*	ность*	чество*	ность*	чество*	ность*
1**	5916	1	32256	9	6451	17	3584	25	2481
1	2958	2	21504	10	5864	18	3395	26	2389
2	1972	3	16128	11	5376	19	3225	27	2304
3	1479	4	12902	12	4962	20	3072	28	2224
4	1183	5	10752	13	4608	21	2932	29	2150
5	986	6	9216	14	4300	22	2804	30	2081
6	845	7	8064	15	4032	23	2688	31	2016
7	739	8	7168	16	3794	24	2580	32	1954

^{*} Наименование графы «Количество» следует читать «Количество перезаписываемых осциплограмм», а графы «Дпительность» — «Дпительность каждой осциплограммы, мс».

^{**} Одна **неперезаписываемая** осциллограмма

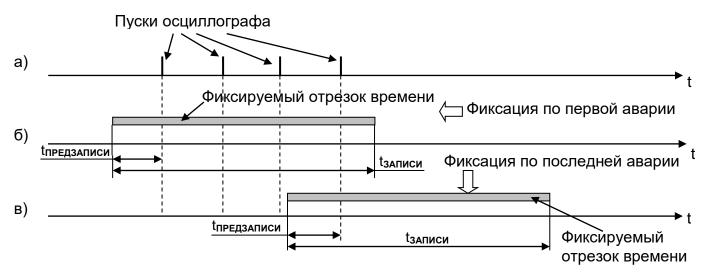
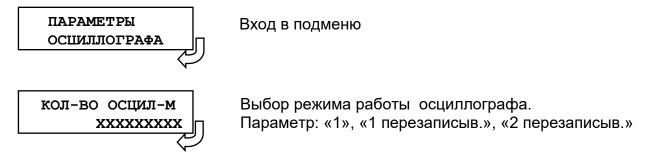



Рисунок 7.2 – Пояснения к значениям параметра «Фиксация»

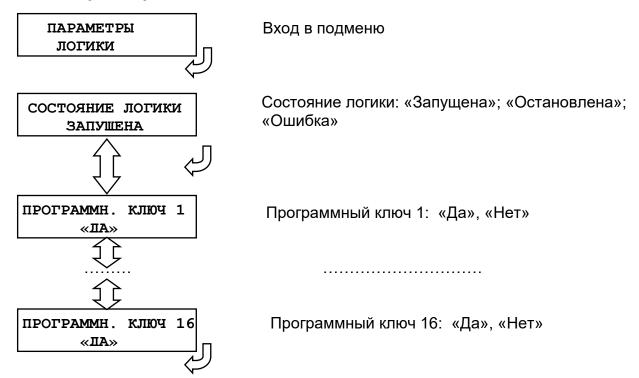
Осциллограмму можно считать и просмотреть с устройства с помощью программы конфигурирования «Уникон». Файл осциллограммы можно сохранять в стандартном формате «comtrade» и в формате программы «Уникон».

Внимание: при перезаписи уставок осциллограммы стираются !!!

2) Подменю "Параметры осциллографа» до версии 1.15 ПО

Предусмотрено три режима работы осциллографа:

- 1 осциллограмма (общая длина записи 2,5 с, длительность записи после аварии 2,0 с (2,403 с с версии 1.14 ПО) в случае пуска по ИО и 0,1 с в случае пуска по защите). В данном режиме осциллограмма жёстко запоминается и может быть стёрта только из меню устройства;
- 1 перезаписываемая осциллограмма (общая длина записи 1,25 с, длительность записи после аварии 0,75 с (1,151 с с версии 1.14 ПО) в случае пуска по ИО и 0,1 с в случае пуска по защите). В данном режиме новая осциллограмма будет стирать предыдущую.
- 2 перезаписываемые осциллограммы (общая длина записи одной осциллограммы 0,83 с, длительность записи после аварии 0,43 с (0,724 с с версии 1.14 ПО) в случае пуска по ИО и 0,1 с в случае пуска по защите). В данном режиме новая осциллограмма будет стирать самую раннюю.


Осциллограмму можно считать и просмотреть с устройства с помощью программы конфигурирования «Уникон». Файл осциллограммы можно сохранять в стандартном формате «comtrade» и в формате программы «Уникон».

Внимание: при перезаписи уставок осциллограммы стираются !!!

Питание схемы памяти осциллографа MP741 осуществляется от накопительных конденсаторов. При отсутствии внешнего питания MP741 конденсаторы обеспечивают сохранение осциллограмм на срок не менее 24 ч. При разряде конденсаторов данные осциллограмм теряются, при этом:

- 1. Устройство MP741 **версии 1.18** и ниже формирует ошибку «Неисправность хранения данных». «Неисправность хранения данных» говорит о недостоверности данных встроенного осциллографа и не является признаком поломки или нештатной работы устройства. Для сброса данной ошибки необходимо перезапустить устройство MP741;
- 2. Устройство MP741 версии *1.19, 2.02, 2.03* и выше в журнале системы формирует запись «Потеря данных осциллографа», которая не является признаком поломки или нештатной работы устройства и не требует сброса.

7.8.11 Параметры логики

7.9 Конфигурация устройства с использованием локального интерфейса

Настройки конфигураций устройства MP741 можно так же осуществить при помощи программного обеспечения «УниКон». Разработку функций с помощью свободнопрограммируемой логики можно осуществлять только с применением программы «Уни-Кон».

Осуществить соединение устройства и ПК можно посредством подключения шнура соединительного USB со стороны ПК и к такому же разъему USB, расположенному на лицевой части корпуса микропроцессорного реле. Скорость передачи данных по интерфейсу USB: 38400 бит/с (до версии 1.15 ПО), 115200 бит/с (с версии 1.15 ПО).

Для правильной работы ПО «УниКон» с устройством МР741 необходимо установить одинаковую скорость обмена данными в программе и микропроцессорном реле (подменю «ПАРАМЕТРЫ СИСТЕМЫ», настройка параметров связи).

8 РУКОВОДСТВО ПО ПРОТОКОЛУ СВЯЗИ "МР-СЕТЬ"

8.1 Организация локальной сети

МР741 имеет встроенные программно-аппаратные средства, позволяющие организовать передачу данных между уровнем защиты и верхним уровнем АСУ ТП или системой диспетчерского телеуправления (СДТУ).

Дистанционно, при помощи интерфейса связи, могут быть просмотрены оперативные значения контролируемых напряжений, журнал аварийных событий, текущие уставки, состояние дискретных входов и релейных выходов. Возможно также дистанционное изменение уставок, рестарт защиты, корректировка времени.

Для MP741 предусмотрена возможность синхронизации по времени широковещательными командами по интерфейсу RS485 с точностью ±10 мс.

При организации локальной информационной сети подстанции все имеющиеся в контуре защиты подключаются к концентратору (или контролируемому пункту), который обеспечивает обмен по единому радио или телефонному каналу связи с верхним уровнем. В устройстве используется протокол связи с верхнем уровнем "MP-CETb" (аналогичный "Modbus"), разработанный специалистами «Белэлектромонтажналадка» для микропроцессорных реле. Протокол "MP-CETb" обеспечивает полудуплексную связь по двухпроводной линии. Интерфейс RS485 обеспечивает гальваническую развязку между защитами и позволяет объединить в локальную сеть до 32 устройств. Примерная структура организации сети показана на рисунке 8.1.

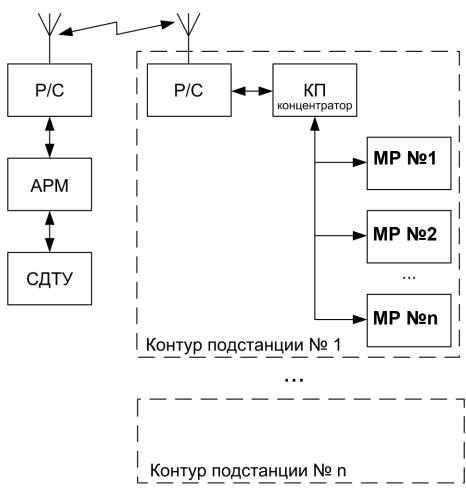


Рисунок 8.1 – Структура организации сети

Р/С - радиостанция

КП - контролируемый пункт

АРМ - автоматизированное рабочее место специалиста

СДТУ - система диспетчерского телеуправления

Цепи интерфейса обеспечивают гальваническую развязку каждого устройства. Подключение кабеля показано на рисунке 8.2.

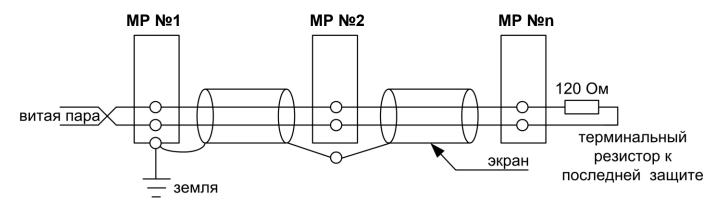


Рисунок 8.2 – Схема подключение кабеля

8.2 Коммуникационный порт

Коммуникационный порт устройства построен на основе гальванически изолированного интерфейса RS485. Режим передачи – полудуплекс, т. е. обмен данными производится по одной линии связи, но приём и передача разделены во времени.

Скорость обмена программируется пользователем на этапе конфигурирования системы и выбирается из ряда: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 бит/с.

Структура байта сообщения:

1 старт бит	8 бит пашшу /мп. бит вперёл\	1 стоп-бит
г стартой	8 бит данных (мл. бит вперёд)	т стоп-оит

8.3 Протокол "МР-СЕТЬ"

8.3.1 Общее описание

Устройства соединяются, используя технологию "главный" - "подчиненный", при которой только одно устройство (главный) может инициировать передачу (сделать запрос). Другие устройства (подчиненные) передают запрашиваемые "главным" устройством данные, или производят запрашиваемые действия. Типичное "главное" устройство включает в себя ведущий (HOST) процессор и панели программирования. Типичное подчиненное устройство - программируемый контроллер. Микропроцессорное реле всегда является подчинённым устройством. "Главный" может адресоваться к индивидуальному "подчиненному" или может инициировать широкую передачу сообщения на все "подчиненные" устройства. "Подчиненное" устройство возвращает сообщение в ответ на запрос, адресуемый именно ему. Ответы не возвращаются при широковещательном запросе от "главного".

Пользователь может устанавливать продолжительность интервала таймаута, в течение которого "головное" устройство будет ожидать ответа от "подчинённого". Если "подчинённый" обнаружил ошибку передачи, то он не формирует ответ "главному".

8.3.2 Организация обмена

Обмен организуется циклами запрос – ответ:

Запрос от главного:

Адрес устройства	Код функции	Данные	Контрольная сум- ма
1байт	1 байт	n байт	2 байта

Ответ подчиненного:

Адрес устройства	Код функции	Данные	Контрольная сум- ма
1байт	1 байт	n байт	2 байта

Запрос: Код функции в запросе говорит "подчиненному" устройству, какое действие необходимо провести. Байты данных содержат информацию, необходимую для выполнения запрошенной функции. Например, код функции 03h подразумевает запрос на чтение содержимого регистров "подчиненного".

Ответ: Если "подчиненный" даёт нормальный ответ, код функции в ответе повторяет код функции в запросе. В байтах данных содержится затребованная информация. Если имеет место ошибка, то код функции модифицируется, и в байтах данных передается причина ошибки.

8.3.3 Режим передачи

В сетях "MP-CETЬ" может быть использован один из двух способов передачи: "ASCII" или "RTU". В микропроцессорных реле используется режим "RTU".

В "RTU" режиме сообщение начинается с интервала тишины, равного времени передачи 3.5 символов при данной скорости передачи. Первым полем затем передается адрес устройства. Вслед за последним передаваемым символом также следует интервал тишины продолжительностью не менее 3.5 символов. Новое сообщение может начинаться после этого интервала.

Фрейм сообщения передается непрерывно. Если интервал тишины длительностью более 1.5 символа возник во время передачи фрейма, принимающее устройство заканчивает прием сообщения и следующий байт будет воспринят как начало следующего сообщения.

Таким образом, если новое сообщение начнется раньше интервала 3.5 символа, принимающее устройство воспримет его как продолжение предыдущего сообщений. В этом случае устанавливается ошибка, так как будет несовпадение контрольных сумм.

Длина сообщения не должна превышать 255 байт.

8.3.4 Содержание адресного поля.

Допустимый адрес передачи находится в диапазоне 0-247. Каждому подчинённому устройству присваивается адрес в пределах 1-247. Адрес 0 используется для широковещательной передачи, его распознаёт каждое устройство.

8.3.5 Содержание поля функции.

Поле функции содержит 1 байт. Диапазон числа 1-255. В микропроцессорных реле используются следующие функции

Таблица 8.1

Функция	Выполняемые действия
1и2	Чтение n бит
3 и 4	Чтение n слов (1 слово – 2 байта)
5	Запись 1 бита
6	Запись 1 слова
15	Запись n бит
16	Запись n слов

Когда "подчиненный" отвечает "главному", он использует поле кода функции для фиксации ошибки. В случае нормального ответа "подчиненный" повторяет оригинальный код функции. Если имеет место ошибка при выполнении функции, возвращается код функции с установленным в 1 старшим битом.

Например, сообщение от "главного" "подчиненному" прочитать группу регистров имеет следующий код функции:

03 hex

Если "подчиненный" выполнил затребованное действие без ошибки, он возвращает такой же код. Если имеет место ошибка, то он возвращает:

83 hex

В добавление к изменению кода функции, "подчиненный" размещает в поле данных уникальный код, который говорит "главному" какая именно ошибка произошла или причину ошибки.

8.3.6 Содержание поля данных

Поле данных в сообщении от "главного" к "подчиненному" содержит дополнительную информацию, которая необходима "подчиненному" для выполнения указанной функции. Оно может содержать адреса регистров или выходов, их количество, счетчик передаваемых байтов данных.

При возникновении ошибки "подчинённый" возвращает следующие коды:

- 01h ¹⁾: неизвестный или неправильный код функции;
- 03h: некорректные данные в поле данных.

Поле данных может не существовать (иметь нулевую длину) в определенных типах сообщений.

8.3.7 Содержание поля контрольной суммы

Поле контрольной суммы содержит 16-ти битовую величину. Контрольная сумма является результатом вычисления Cyclical Redundancy Check (CRC) сделанного над содержанием сообщения. Полином:

$$1 + x^2 + x^{15} + x^{16} = 1010\ 0000\ 0000\ 0001\ bin = A001\ Hex$$

CRC добавляется к сообщению последним полем, младшим байтом вперед.

8.4 Структура данных

Данные в микропроцессорных реле организованы так, что младший байт (МлБ) и старший байт (СтБ) располагаются в порядке возрастания адресов.

Пример слова данных (2 байта): адрес п МлБ

адрес n+1 СтБ

Пример двух слов данных (4 байта): адрес n МлБ

адрес n+1 СтБ адрес n+2 МлБ адрес n+3 СтБ

8.5 Функции "МР-СЕТЬ"

8.5.1 Функция 1 или 2

Формат чтения п бит:

Запрос:

Адрес	01 или 02	Начальный ад-		Кол-во входов		Контрольная	
устройства	01 111111 02	p	ec	кол-во входов		сумма	
1байт	1 байт	2 байта		2 ба	йта	2 ба	йта
		СтБ	МлБ	СтБ	МлБ	МлБ	СтБ

МлБ – младший байт 16-ти разрядного слова.

СтБ – старший байт 16-ти разрядного слова.

Ответ:

Адрес устройства	01 или 02	Кол-во счи- танных байт	1-й счи- танный байт		n-й счи- танный байт	Контро сум	
1байт	1 байт	1 байт	Ī	n бай	T	2 ба	йта
						МлБ	СтБ

Пример чтения п бит:

С устройства (адрес устройства – 03) опросить 10 входов, начиная со 2-го входа по адресу 0.

Начальный адрес = 0002h.

Кол-во бит = 000Ah.

Запрос:

oanpoo.							
Адрес	Код функ-	Начал	Начальный Кол-во бы		. бит**	Контро	льная
устройства	ции	адрес*		NOTI-BO	о оит	сум	ма
03h	01h	00h	02h	00h	0Ah		

Адрес устройства	Код функ- ции	Кол-во счи- танных байт	1-й считан- ный байт	2-й счи- танный байт	Контрольная сумма
03h	01h	02h	71h	40h	

^{*} Начальный адрес должен быть кратен 8. Если он не кратен, то округляется до меньшего кратного 8.

^{**} Если количество бит не кратно 8, то округляется до большего кратного 8.

^{1) &}quot;h" – признак шестнадцатеричной системы счисления чисел

Для определения начального адреса входов, начиная с k-го бита N-го адреса, используется выражение:

Начальный адрес = $N \times 8$ бит + k бит

Например, для чтения входов, начиная с 4-го бита по 2-му адресу, получим:

Начальный адрес = 2×8 бит + 4 бит = $20 \Rightarrow 0014h$.

8.5.2 Функция 5

Формат установки 1 бита:

Запрос:

Адрес устройства	05	Адрес	с бита	Значение бита	0	Контрольная сумма	
1байт	1 байт	2 ба	айта	1 байт	1 байт	2 ба	йта
		СтБ	МлБ			МлБ	СтБ

МлБ – младший байт 16-ти разрядного слова.

СтБ – старший байт 16-ти разрядного слова.

Ответ:

Адрес устройства	05	Адрес	с бита	Значение бита	0	•	ольная има
1байт	1 байт	2 ба	айта	1 байт	1 байт	2 б	айта
		СтБ	МлБ			МлБ	СтБ

Для функции 5 кадр ответа идентичен кадру запроса.

Байт "Значение бита":

- бит, устанавливаемый в 0 => значение бита = 00h;
- бит, устанавливаемый в 1 => значение бита = FFh.

Для определения адреса выхода, используется выражение:

Адрес выхода = (Адрес байта) × 8 бит + № бита

Пример установки 1 бита:

На устройстве (адрес устройства – 04) установить бит 1 по адресу 0.

Адрес выхода = 0×8 бит + 1 бит = 1 = > 0001h

Выход устанавливается в 1 => значение байта = FFh.

Запрос:

Адрес устройства	Код функции	Адрес	с бита	Значение бита	0	Контрольная сумма	
04h	05h	00h	01h	FFh	00h	МлБ	СтБ

Адрес устройства	Код функции	Адрес бита		Значение бита	0	•	ольная има
04h	05h	00h 01h		FFh	00h	МлБ	СтБ

8.5.3 Функция 3 или 4

Формат чтения n слов:

Запрос:

Адрес	03 или 04	3 или 04 Начальный ад-		Кол-во	СПОВ	Контро	льная
устройства	03 11111 04	p _i	ec	I KOJI-BC	CILOB	сумма	
1байт	1 байт	2 байта		2 ба	йта	2 ба	йта
		СтБ	МлБ	СтБ	МлБ	МлБ	СтБ

МлБ – младший байт 16-ти разрядного слова.

СтБ – старший байт 16-ти разрядного слова.

Ответ:

Адрес устройства	03 или 04	Кол-во счи- танных байт	тан	1-е счи- танное слово		тан	счи- ное ово	Контрольная сумма		
1байт	1 байт	1 байт	п ба			n байт			2 байта	
			СтБ	Мл Б		СтБ	Мл Б	МлБ	СтБ	

Начальный адрес определяется следующим образом:

- СтБ = номер страницы;
- МлБ = адрес байта на странице.

Пример чтения п слов:

С устройства (адрес устройства – 04) прочитать 4 байта, по адресу:

- № страницы = 10h;
- адрес байта = 02h;
- кол-во байт = 04h.

Кол-во слов = 02h.

Начальный адрес = 1002h.

Запрос:

Адрес устройства	Код функ- ции	Начальный ад- рес		Кол-во	слов	Контрольная сумма		
04h	03h	10h	02h	00h	02h	МлБ	СтБ	

МлБ – младший байт 16-ти разрядного слова.

СтБ – старший байт 16-ти разрядного слова.

Адрес устройства	Код функции	Кол-во считанных байт	1-е счи сло		2-е счи сло			рольная /мма
04h	03h	04h	05h	24h	00h	00h	МлБ	СтБ

8.5.4 Функция 6

Формат записи 1 слова:

Запрос:

Адрес устройства	06	Адрес	Адрес слова		Значение слова		Контрольная сумма		
1байт	1 байт	2 байта		2 ба	айта	2 ба	айта		
		СтБ	МлБ	СтБ	МлБ	МлБ	СтБ		

МлБ – младший байт 16-ти разрядного слова.

СтБ – старший байт 16-ти разрядного слова.

Ответ:

Адрес устройства	06	Адрес	слова	Значение слова		Контрольная сумма		
1байт	1 байт	2 ба	2 байта		2 байта		ита	
		СтБ	МлБ	СтБ	МлБ	МлБ	СтБ	

Адрес слова определяется следующим образом:

- СтБ = номер страницы;
- МлБ = адрес байта уставки на странице.

Пример записи 1 слова:

На устройство (адрес устройства – 04) записать 2 байта:

- № страницы = 02h;
- адрес байта = 60 = 3Ch;
- кол-во байт = 02h.

Кол-во слов = 01h.

Адрес слова = 023Ch.

Значение слова = 1A02h.

Запрос:

Адрес устройства	Код функ- ции	Адрес	слова	Значени	1е слова	Контро сум	
04h	06h	02h	3Ch	1Ah	02h	МлБ	СтБ

МлБ – младший байт 16-ти разрядного слова.

СтБ – старший байт 16-ти разрядного слова.

Адрес устройства	Код функ- ции	Адрес	слова	Значени	1е слова	Контро сум	ольная има
04h	06h	02h	3Ch	1Ah	02h	МлБ	СтБ

8.5.5 Функция 15

Формат записи п бит:

Запрос:

Адрес	0Fh	Начал	пьный	Коп-в	о бит	Кол-во	Знач	чения	Контро	льная
устройства	UFII	ад	рес	Кол-во бит		байт	бит		сумма	
1байт	1байт	2 ба	айта	2 ба	айта	1 байт	2 б	айта	2 ба	йта
		СтБ	МлБ	СтБ	МлБ		СтБ	МлБ	МлБ	СтБ

Ответ:

Адрес устройства	0Fh		Адрес 1-го запи- санного бита		• •		Контрольная сумма	
1байт	1 байт	2 байта		2 байта		2 байта		
		СтБ	МлБ	СтБ	МлБ	МлБ	СтБ	

Пример записи п бит:

На устройство (адрес устройства – 04) записать 2 байта: CD 01 Hex (1100 1101 0000 0001 двоичное).

Кол-во байт = 01h.

Начальный адрес = 0013h.

Запрос:

Адрес устройства	Код функции	Нач ный а	аль- адрес	Кол-во бит		Кол- во байт	Значение бит		Контрольная сумма	
04h	0Fh	00h	13h	00h	0Ah	02h	CDh	01h	МлБ	СтБ

Адрес	Код	Начальный		Кол–во	запи-	Контрольная	
устройства	функции	адрес		санны	х слов	сумма	
04h	0Fh	00h	13h	00h	0Ah	МлБ	СтБ

8.5.6 Функция 16

Формат записи п слов:

Запрос:

Адрес уст-ва	10h		аль- адрес		Кол-во во Значения слов байт п слов			Контроль- ная сумма					
1байт	1байт	2 ба	айта	2 ба	2 байта			n слов			2 ба	ита	
							1-е слово п-е слово						
		СтБ	МлБ	СтБ	МлБ		СтБ	МлБ		СтБ	МлБ	МлБ	СтБ

Ответ:

Адрес	10h	Адрес 1-го запи-		Кол-во	записан-	Контрольная	
устройства	1011	санного	о слова	ных	СЛОВ	сумма	
1байт	1 байт	2 байта		2 байта		2 байта	
		СтБ	МлБ	СтБ	МлБ	МлБ	СтБ

Адрес слова определяется следующим образом:

- СтБ = номер страницы;
- МлБ = адрес байта уставки на странице.

Пример записи п слов:

На устройство (адрес устройства – 04) записать 2 слова:

- № страницы = 02h;
- начальный адрес = 28 = 1Ch;
- кол-во слов = 02h;
- кол-во байт = 04h.

Кол-во слов = 01h.

Начальный адрес = 021Ch.

Значение 1-го слова = 01A0h.

Значение 2-го слова = 057Ah.

Запрос:

	т-ва	Код функ- ции		тьный рес	Кол сл	I-BO OB	Кол- во байт	3нач 1-го с		Значе 2-го с.		Контр ная с	
0)4h	10h	02h	1Ch	00h	02h	04h	01h	A0h	05h	7Ah	МлБ	СтБ

Ī	Адрес	Код	Начальный ад-		Кол–во	записан-	Контрольная сум-		
	устройства	функции	pec		ных	СЛОВ	ма		
	04h	10h	02h	1Ch	00h	02h	МлБ	СтБ	

8.6 Описание страниц памяти данных

Описание страниц памяти данных.

№ стра- ниц	Наименование страниц	Доступ	Функции
00h	Системная информация	Запись и чтение	5 *
02h	Дата и время (Word)	Запись и чтение	6, 16, 3, 4
03h	Дата и время (ASCII)	Запись и чтение	6, 16, 3, 4
04h	Группа уставок	Запись и чтение	6, 16, 3, 4
05h	Версия	Чтение	3, 4
08h	Журнал осциллографа	Чтение	3, 4
09h	Осциллограф	Чтение	6, 3, 4
10h	Уставки	Запись и чтение	6, 16, 3, 4
18h	База данных дискретных сигна- лов	Чтение и запись	1, 2, 5, 3, 4
19h	База данных аналоговых сигна- лов	Чтение	3, 4
1Ah	База данных ресурса выключа- теля	Чтение	3, 4
1Bh	База данных расширенного диа- пазона линейных напряже- ний, Uab, Ubc, Uca (более 256 B)	Чтение	3, 4
20h	Журнал системы	Чтение	3, 4
28h	Журнал аварий	Чтение	3, 4

^{*} По адресу 00h активизируются уставки, записанные по интерфейсу (адрес 10h).

8.7 Группа уставок и версия

Чтобы переключить группу уставок, расположенную на странице 04h, нужно по этому адресу записать 1 слово со значением 00 – для основной группы уставок и 01 – для резервной группы уставок.

Пример для переключения на основную группу уставок:

Адрес устройства	Команда записи слова	Адрес	слова	Значени	1е слова	•	ольная има
1 байт	1 байт	2 ба	2 байта		2 байта		айта
	06	04	00	00	00	МлБ	СтБ

Данные версии, расположенные на странице 05h, хранятся в формате ASCII, занимают 16 слов. Включают в себя информацию о версии и заводской номер устройства.

8.8 Дата и время

Данные дата и время, расположенные на странице 02h, хранятся в формате Word, занимают один младший байт слова.

Данные	Адрес 1-го	Кол-во
данные	слова	СЛОВ
Год *	0	1
Месяц	1	1
Число	2	1
Часы	3	1

Данные	Адрес 1-го	Кол-во
данные	слова	СЛОВ
Минуты	4	1
Секунды	5	1
Десятки миллисекунд	6	1

Данные дата и время, расположенные на странице 03h, хранятся в формате ASCII.

Пошило	Адрес 1-го	Кол-во
Данные	слова	СЛОВ
Год *	0	1
Месяц	1	1
Число	2	1
Часы	3	1
Минуты	4	1
Секунды	5	1
Десятки миллисекунд	6	1

^{* 2} последние цифры года.

8.9 База данных дискретных сигналов

База данных дискретных сигналов расположена на странице памяти 18h

Запись (доступна функции 5):

Адрес	Сигнал
1800h	Отключить выключатель (СДТУ)
1801h	Включить выключатель (СДТУ)
1802h	Установка блокировки АВР (СДТУ)
1803h	Сброс блокировки АВР (СДТУ)
1804h	Сбросить индикацию (СДТУ)
1805h	Сбросить запись неисправности (СДТУ)
1806h	Сбросить запись журнала системы (СДТУ)
1807h	Сбросить запись журнала аварий (СДТУ)

Чтение:

Адр	рес	
функции	функции	Сигнал
1, 2	3, 4	
1800h	1800h*	Выключатель отключен
1801h		Выключатель включен
1802h		Неисправность
1803h		Группа уставок (0 – основная, 1- резервная)
1804h		Аварийная резервная группа уставок
1805h		Наличие неисправности (СДТУ)
1806h		Новая запись журнала системы (СДТУ)
1807h		Новая запись журнала аварий (СДТУ)
1808h		АВР блокировки
1809h		Состояние задачи логики (0-запрещена,
		1-разрешена)
180Ah-		Резерв
181Fh		
1820h	1802h	Не используется
1821h		Не используется
1822h		Не используется
1823h		Не используется
1824h		Индикатор отключен

Адр	ес	Сигнал
1825h		Индикатор включен
1826h		Индикатор журнал аварий
1827h		Индикатор журнал системы
1828h		Программируемый индикатор 1
1829h		Программируемый индикатор 1
182Ah		Программируемый индикатор 2
182Bh		
		Программируемый индикатор 4
182Ch		Программируемый индикатор 5
182Dh		Программируемый индикатор 6
182Eh		Программируемый индикатор 7
182Fh	10001	Программируемый индикатор 8
1830h	1803h	Состояние реле 1
1831h		Состояние реле 2
1832h		Состояние реле 3
1833h		Состояние реле 4
1834h		Состояние реле 5
1835h		Состояние реле 6
1836h		Состояние реле 7
1837h		Состояние реле 8
1838h		Состояние реле 9
1839h		Состояние реле 10
183Ah		Состояние реле 11
183Bh		Состояние реле 12
183Ch		Состояние реле 13
183Dh		Резерв
183Eh		Резерв
183Fh		Резерв
1840h	1804h	Неисправность устройства (аппаратная)
1841h		Неисправность ошибка задачи логики
1842h		Неисправность устройства (данных)
1843h		Резерв
1844h		Неисправность выключателя
1845h		Неисправность измерения (тока)
1846h		Неисправность измерения (напряжения)
1847h		Неисправность измерения (частоты)
1848h-		
184Fh		Резерв
1850h	1805h	Ошибка ОЗУ
1851h	100011	Ошибка шины I2c
1852h		Ошибка температуры
1853h		Ошибка МСА U
1854h		Ошибка МСА І
1855h		Ошибка МРВ
1856h		Ошибка МСД 1
1857h		Ошибка МСД 2
1858h		Ошибка исд 2
1859h		Ошибка уставок Ошибка коэффициентов АЦП
185Ah		Ошибка размера ППЗУ
185Bh		Ошибка журнала системы
185Ch		Ошибка журнала системы Ошибка журнала аварий
185Ch		Ошибка журнала аварии Ошибка часов
185Eh		Ошибка осциллографа
185Fh	10065	Ошибка задачи логики
1860h	1806h	Неисправность выключателя (внешний сигнал)
1861h		Неисправность выключателя (блок контактов)
1862h		Неисправность выключателя (управление)

Адр	рес	Сигнал					
1863h		Отказ (УРОВ) выключателя (наличие токов)					
1864h		Резерв					
1865h		Резерв					
1866h		Неисправность цепей включения					
1867h		Неисправность цепей отключения					
1868h		пеисправность цепей отключения Контроль внешней неисправности labc					
1869h		Небаланс кодов АЦП labc					
186Ah		Не симметрия labc					
186Bh		labc < 1,5%					
186Ch		Контроль внешней неисправности In					
186Dh		Резерв					
186Eh		Резерв					
186Fh		In < 1,5%					
1870h	1807h	Контроль внешней неисправности Uabc					
1871h	100711	Небаланс кодов АЦП Uabc					
1872h		Не симметрия Uabc					
1873h		Uabc < 5V					
1874h		Контроль внешней неисправности Un					
1875h		Резерв					
1876h		Резерв					
1877h		Un < 5V					
1878h		Контроль внешней неисправности F					
1879h		Частота ниже 40 Гц					
187Ah		Частота выше 60 Гц					
187Bh		Umax < 10V					
187Ch		Резерв					
187Dh		Резерв					
187Eh		Резерв					
187Fh		Резерв					
1880h	1808h	Отключить выключатель					
1881h	100011	Включить выключатель					
1882h		Неисправность					
1883h		Группа уставок (0 – основная,1 – резервная)					
1884h		Вход К1 (с версии ПО 3.03)					
1885h		Сигнализация (запись в журнал аварий)					
1886h		Авария (аварийное отключение)					
1887h		Земля (запись в журнал аварий)					
1888h		АВР включить резерв					
1889h		АВР отключить резерв					
188Ah		АВР блокировка					
188Bh		Вход К2 (с версии ПО 3.03)					
188Ch		Работа ЛЗШ					
188Dh		Работа УРОВ					
188Eh		Включение выключателя по АПВ					
188Fh		Ускорение по включению выключателя					
1890h	1809h	Дискретный сигнал Д1					
1891h		Дискретный сигнал Д2					
1892h		Дискретный сигнал Д3					
1893h		Дискретный сигнал Д4					
1894h		Дискретный сигнал Д5					
1895h		Дискретный сигнал Д6					
1896h		Дискретный сигнал Д7					
1897h		Дискретный сигнал Д8					
1898h		Дискретный сигнал Д9					
1899h		Дискретный сигнал Д10					
189Ah		Дискретный сигнал Д11					

Адр	рес	Сигнал
189Bh		Дискретный сигнал Д12
189Ch	1	Дискретный сигнал Д13
189Dh	1	Дискретный сигнал Д14
189Eh	-	Дискретный сигнал Д15
189Fh	-	Дискретный сигнал Д16
18A0h	180Ah	Логический сигнал Л1
18A1h		Логический сигнал Л2
18A2h		Логический сигнал Л3
18A3h	-	Логический сигнал Л4
18A4h	-	Логический сигнал Л5
18A5h	-	Логический сигнал Л6
18A6h		Логический сигнал Л7
18A7h		Логический сигнал Л8
18A8h		Вых. логический сигнал ВЛС1
18A9h		Вых. логический сигнал ВЛС2
18AAh		Вых. логический сигнал ВЛС3
18ABh		Вых. логический сигнал ВЛС4
18ACh		Вых. логический сигнал ВЛС5
18ADh		Вых. логический сигнал ВЛС6
18AEh		Вых. логический сигнал ВЛС7
18AFh		Вых. логический сигнал ВЛС8
18B0h	180Bh	<pre>ON</pre>
18B1h		СРАБ I>
18B2h		NO I>>
18B3h		СРАБ I>>
18B4h	-	NO l>>>
18B5h		СРАБ I>>>
18B6h	-	NO I>>>
18B7h		СРАБ I>>>> ИО I2>
18B8h 18B9h		СРАБ I2>
18BAh	-	ИО I2>>
18BBh		СРАБ I2>>
18BCh	1	NO 10>
18BDh	-	CPA6 I0>
18BEh		NO 10>>
18BFh		СРАБ I0>>
18C0h	180Ch	NO In>
18C1h		СРАБ In>
18C2h	1	NO In>>
18C3h	1	СРАБ In>>
18C4h]	NO I _C >
18C5h		СРАБ I _Г >
18C6h		ИО I2/ I1
18C7h		СРАБ 12/ 11
18C8h		ИО F>
18C9h		СРАБ F>
18CAh		ИО F>>
18CBh		СРАБ F>>
18CCh		NO F<
18CDh	-	CPA6 F<
18CEh	-	NO F<<
18CFh	10005	CPA6 F<<
18D0h 18D1h	180Dh	ИО U> CPAБ U>
18D1h	1	NO U>>
IODZII	j	NO 022

Адр	рес	Сигнал
18D3h		СРАБ U>>
18D4h		ИО U<
18D5h		CPAБ U<
18D6h		ИО U<<
18D7h		CPAБ U<<
18D8h		ИО U2>
18D9h		СРАБ U2>
18DAh		ИО U2>>
18DBh		СРАБ U2>>
18DCh		NO NO
18DDh		СРАБ U0>
18DEh		ИО U0>>
18DFh		СРАБ U0>>
18E0h	180Eh	СРАБ ВЗ-1
18E1h		СРАБ ВЗ-2
18E2h		СРАБ ВЗ-3
18E3h		СРАБ ВЗ-4
18E4h		СРАБ ВЗ-5
18E5h		СРАБ ВЗ-6
18E6h		СРАБ ВЗ-7
18E7h		СРАБ ВЗ-8
18E8h		Сигнал свободной логики (ССЛ) 1
18E9h		ССЛ 2
18EAh		ССЛ 3
18EBh		ССЛ 4
18ECh		ССЛ 5
18EDh		ССЛ 6
18EEh		ССЛ 7
18EFh	4005	ССЛ 8
18F0h	180Fh	ССЛ 9 ССЛ 10
18F1h 18F2h		ССЛ 10
18F3h		ССЛ 12
18F4h		ССЛ 13
18F5h		ССЛ 14
18F6h		ССЛ 15
18F7h		ССЛ 16
18F8h		ССЛ 17
18F9h		ССЛ 18
18FAh		ССЛ 19
18FBh		ССЛ 20
18FCh		ССЛ 21
18FDh		ССЛ 22
18FEh		ССЛ 23
18FFh		ССЛ 24
1900	1810h	Резерв
1910	1811h	Направление мощности по каналу In**
1911		Ошибка направления мощности по каналу In***
1912		Направление мощности по каналу Ia**
1913		Ошибка направления мощности по каналу la***
1914		Направление мощности по каналу Ib**
1915		Ошибка направления мощности по каналу lb***
1916		Направление мощности по каналу Іс**
1917		Ошибка направления мощности по каналу Іс***
1918		Направление мощности по каналу I0**
1919		Ошибка направления мощности по каналу 10***

Адр	рес		Сигнал						
191A		Направление мощности по ка							
191B		Ошибка направления мощно	сти по канапу I1***						
191C		Направление мощности по ка	аналу 12**						
191D		Ошибка направления мощности по каналу I2***							
191E		Знак активной мощности **							
191E		Знак активной мощности **							
1920	1812h	Сигнал отключения от защит							
1921	101211	Сигнал отключения от защиты I>>							
1921		Сигнал отключения от защит							
1922									
		Сигнал отключения от защит							
1924		Сигнал отключения от защит							
1925		Сигнал отключения от защит							
1926		Сигнал отключения от защит							
1927		Сигнал отключения от защит							
1928		Сигнал отключения от защит							
1929		Сигнал отключения от защит							
192A		Сигнал отключения от защит							
192B		Сигнал отключения от защит	ы l2/l1						
192C		Сигнал отключения от защит	ы F>						
192D		Сигнал отключения от защиты F>>							
192E		Сигнал отключения от защиты F<							
192F		Сигнал отключения от защиты F<<							
1930	1813h	Сигнал отключения от защит	ы U>						
1931		Сигнал отключения от защит	ы U>>						
1932		Сигнал отключения от защит	ы U<						
1933		Сигнал отключения от защиты U<<							
1934		Сигнал отключения от защит	ы U2>						
1935		Сигнал отключения от защит	ы U2>>						
1936		Сигнал отключения от защиты U0>							
1937		Сигнал отключения от защиты U0>>							
1938		Сигнал отключения от защиты ВЗ-1							
1939		Сигнал отключения от защиты ВЗ-2							
193A		Сигнал отключения от защит							
193B		Сигнал отключения от защит							
193C	1	Сигнал отключения от защит							
193D	1	Сигнал отключения от защит							
193E	1	Сигнал отключения от защит							
193F		Сигнал отключения от защит							
1940-	1814h-	Резерв	5. 50 0						
1950	1815 h	. 55575							
, 500	107011	До версии ПО 3.01	С версии ПО 3.01						
1960	1816h	Резерв	Состояние общего направления мощности						
1961	101011	Резерв	(00 – прямое; 01 – обратное; 10 – оба; 11 - не-						
1301		1 000pb	известное)						
			,						
1962-	-	Desent							
1962- 196F		Резерв							
1001	1817h	Резерв							
	1818h	1 000pb							
	101011								

^{*} Во втором столбце (функции 3, 4) перечисление идёт в формате Word;

^{** 0 – «}плюс», 1 – «минус»; сигналы «знак активной мощности» и «знак реактивной мощности» вводятся с версий ПО 1.21; 2.04; 2.05s и 2.05st и выше

^{*** 1 – «}ошибка», 0 – «нет ошибки»

8.10 База данных аналоговых сигналов

Данные телеизмерений (ТИ), расположенные на странице памяти 19h:

Измерения	Адрес 1-го слова	Кол-во слов
Ток In	0	1
Ток фазы Іа	1	1
Ток фазы lb	2	1
Ток фазы Іс	3	1
Ток нулевой последовательности 10	4	1
Ток прямой последовательности І1	5	1
Ток обратной последовательности I2	6	1
Ток высшей гармоники нулевой по-	7	1
следовательности Іг Напряжение Un	8	1
Напряжение Ua	9	1
·	10	1
Напряжение Ub	_	
Напряжение Uc	11	1
Линейное напряжение Uab	12	1
Линейное напряжение Ubc	13	1
Линейное напряжение Uca	14	1
Напряжение нулевой последователь- ности U0	15	1
Напряжение прямой последователь- ности U1	16	1
Напряжение обратной последова- тельности U2	17	1
Частота F	18	1
Cosφ	19	1
Активная мощность Р в кВт	20	1
Реактивная мощность Q в кВ·А	21	1
ОМП Lкз	22	1

Для расширенного диапазона линейных напряжений (более 256 B), расположенных на странице памяти 1Bh имеем (с версии ПО 2.02):

Измерения	Адрес 1-го слова	Кол-во слов
Линейное напряжение Uab	0	2
Линейное напряжение Ubc	2	2
Линейное напряжение Uca	4	2

Для получения значения тока I в виде первичных значений из относительных единиц X надо:

$$I = \frac{b \cdot X}{65536} \cdot I_{TT}$$
 (для la, lb, lc, l0, l1, l2);

$$I = \frac{b \cdot X}{65536} \cdot I_{TTHII}$$
 (для In, Ir),

где b = 40 для la, lb, lc, l0, l1, l2;

b = 5 для In, Ir;

I_{ТТ} – номинальный первичный ток ТТ для Ia, Ib, Ic, I0, I1, I2;

Іттнп – номинальный первичный ток ТТНП для Іо, Іг.

Для получения значения напряжения U в виде первичных значений из относительных единиц X надо:

$$U = \frac{X}{256} \cdot K ,$$

где K = Kтн для всех значений напряжения, кроме Un;

 $K = K T H H \Pi Д Л Я U \Pi .$

Примечание – расчёт Ктн; Ктннп см. в подразделе 8.14 «Формат уставок».

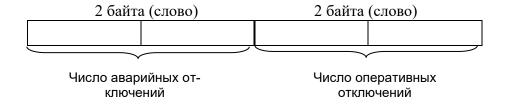
Для получения значения частоты F в виде первичных значений из относительных единиц X надо:

$$F = \frac{X}{256}$$

Для получения значения расстояния до места повреждения (L_{к3}) в км из относительных единиц надо:

$$L_{K3} = \frac{X}{256}$$

Для получения значения соѕф в виде первичных значений из относительных единиц надо:


$$\cos\varphi = \frac{X}{256}$$

8.11 База данных ресурса выключателя

База данных ресурса выключателя расположена на странице памяти 1Ah:

Данные	Адрес 1-го слова	Кол-во слов
Число отключений *	0	2
Суммарный ток отключения фазы А	2	2
Суммарный ток отключения фазы В	4	2
Суммарный ток отключения фазы С	6	2

* - Число отключений:

8.12 Формат журнала системы

Журнал системы может содержать 128 сообщений о событиях в системе. Сообщения хранятся в 2-х форматах: в словах (Word), в ASCII-коде.

Для каждого сообщения: 8 слов – в формат Word, 8 слов – в ASCII.

Ниже приведены адреса всех сообщений.

№ co-		Адр	eca	№ co-	_	Адр	реса	№ co-		Адр	eca
об- щения	Формат	HEX	DEC	об- щения	Формат	HEX	DEC	об- щения	Формат	HEX	DEC
1	Word	2000	8192	44	Word	22B0	8880	87	Word	2560	9568
1	ASCII	2008	8200	44	ASCII	22B8	8888	87	ASCII	2568	9576
	Word	2010	8208	4.5	Word	22C0	8896	00	Word	2570	9584
2	ASCII	2018	8216	45	ASCII	22C8	8904	88	ASCII	2578	9592
3	Word	2020	8224	46	Word	22D0	8912	89	Word	2580	9600
3	ASCII	2028	8232	40	ASCII	22D8	8920	89	ASCII	2588	9608
4	Word	2030	8240	47	Word	22E0	8928	90	Word	2590	9616
4	ASCII	2038	8248	47	ASCII	22E8	8936	90	ASCII	2598	9624
5	Word	2040	8256	48	Word	22F0	8944	91	Word	25A0	9632
3	ASCII	2048	8264	46	ASCII	22F8	8952	91	ASCII	25A8	9640
6	Word	2050	8272	49	Word	2300	8960	92	Word	25B0	9648
O	ASCII	2058	8280	49	ASCII	2308	8968	92	ASCII	25B8	9656
7	Word	2060	8288	50	Word	2310	8976	93	Word	25C0	9664
/	ASCII	2068	8296	30	ASCII	2318	8984	93	ASCII	25C8	9672
8	Word	2070	8304	51	Word	2320	8992	94	Word	25D0	9680
0	ASCII	2078	8312	31	ASCII	2328	9000	94	ASCII	25D8	9688
9	Word	2080	8320	52	Word	2330	9008	95	Word	25E0	9696
9	ASCII	2088	8328	32	ASCII	2338	9016	93	ASCII	25E8	9704
10	Word	2090	8336	52	Word	2340	9024	0.6	Word	25F0	9712
10	ASCII	2098	8344	53	ASCII	2348	9032	96	ASCII	25F8	9720
1.1	Word	20A0	8352	<i>7.</i> 4	Word	2350	9040	07	Word	2600	9728
11	ASCII	20A8	8360	54	ASCII	2358	9048	97	ASCII	2608	9736
10	Word	20B0	8368		Word	2360	9056	00	Word	2610	9744
12	ASCII	20B8	8376	55	ASCII	2368	9064	98	ASCII	2618	9752
10	Word	20C0	8384		Word	2370	9072	00	Word	2620	9760
13	ASCII	20C8	8392	56	ASCII	2378	9080	99	ASCII	2628	9768
	Word	20D0	8400		Word	2380	9088	100	Word	2630	9776
14	ASCII	20D8	8408	57	ASCII	2388	9096	100	ASCII	2638	9784
1.5	Word	20E0	8416	70	Word	2390	9104	101	Word	2640	9792
15	ASCII	20E8	8424	58	ASCII	2398	9112	101	ASCII	2648	9800
1.0	Word	20F0	8432	50	Word	23A0	9120	100	Word	2650	9808
16	ASCII	20F8	8440	59	ASCII	23A8	9128	102	ASCII	2658	9816
17	Word	2100	8448	60	Word	23B0	9136	102	Word	2660	9824
17	ASCII	2108	8456	60	ASCII	23B8	9144	103	ASCII	2668	9832
10	Word	2110	8464	<i>C</i> 1	Word	23C0	9152	104	Word	2670	9840
18	ASCII	2118	8472	61	ASCII	23C8	9160	104	ASCII	2678	9848
19	Word	2120	8480	62	Word	23D0	9168	105	Word	2680	9856
19	ASCII	2128	8488	02	ASCII	23D8	9176	103	ASCII	2688	9864
20	Word	2130	8496	63	Word	23E0	9184	106	Word	2690	9872
20	ASCII	2138	8504	03	ASCII	23E8	9192	100	ASCII	2698	9880
21	Word	2140	8512	64	Word	23F0	9200	107	Word	26A0	9888
<i>∠</i> 1	ASCII	2148	8520	04	ASCII	23F8	9208	107	ASCII	26A8	9896

I	***	0150	0.720	1	*** *	2400	021 -		*** 1	0.600	0001
22	Word	2150	8528	65	Word	2400	9216	108	Word	26B0	9904
	ASCII	2158	8536		ASCII	2408	9224		ASCII	26B8	9912
23	Word	2160	8544	66	Word	2410	9232	109	Word	26C0	9920
	ASCII	2168	8552		ASCII	2418	9240	-07	ASCII	26C8	9928
24	Word	2170	8560	67	Word	2420	9248	110	Word	26D0	9936
۷٦	ASCII	2178	8568	07	ASCII	2428	9256	110	ASCII	26D8	9944
25	Word	2180	8576	68	Word	2430	9264	111	Word	26E0	9952
23	ASCII	2188	8584	08	ASCII	2438	9272	111	ASCII	26E8	9960
26	Word	2190	8592	69	Word	2440	9280	112	Word	26F0	9968
20	ASCII	2198	8600	09	ASCII	2448	9288	112	ASCII	26F8	9976
27	Word	21A0	8608	70	Word	2450	9296	112	Word	2700	9984
27	ASCII	21A8	8616	70	ASCII	2458	9304	113	ASCII	2708	9992
20	Word	21B0	8624		Word	2460	9312	114	Word	2710	10000
28	ASCII	21B8	8632	71	ASCII	2468	9320	114	ASCII	2718	10008
20	Word	21C0	8640	70	Word	2470	9328	117	Word	2720	10016
29	ASCII	21C8	8648	72	ASCII	2478	9336	115	ASCII	2728	10024
20	Word	21D0	8656	70	Word	2480	9344	116	Word	2730	10032
30	ASCII	21D8	8664	73	ASCII	2488	9352	116	ASCII	2738	10040
21	Word	21E0	8672	7.4	Word	2490	9360	117	Word	2740	10048
31	ASCII	21E8	8680	74	ASCII	2498	9368	117	ASCII	2748	10056
22	Word	21F0	8688	75	Word	24A0	9376	110	Word	2750	10064
32	ASCII	21F8	8696	75	ASCII	24A8	9384	118	ASCII	2758	10072
33	Word	2200	8704	76	Word	24B0	9392	119	Word	2760	10080
33	ASCII	2208	8712	70	ASCII	24B8	9400	117	ASCII	2768	10088
34	Word	2210	8720	77	Word	24C0	9408	120	Word	2770	10096
24	ASCII	2218	8728	′′	ASCII	24C8	9416	120	ASCII	2778	10104
35	Word	2220	8736	78	Word	24D0	9424	121	Word	2780	10112
33	ASCII	2228	8744	76	ASCII	24D8	9432	141	ASCII	2788	10120
36	Word	2230	8752	79	Word	24E0	9440	122	Word	2790	10128
30	ASCII	2238	8760	19	ASCII	24E8	9448	122	ASCII	2798	10136
27	Word	2240	8768	80	Word	24F0	9456	102	Word	27A0	10144
37	ASCII	2248	8776	80	ASCII	24F8	9464	123	ASCII	27A8	10152
20	Word	2250	8784	0.1	Word	2500	9472	104	Word	27B0	10160
38	ASCII	2258	8792	81	ASCII	2508	9480	124	ASCII	27B8	10168
20	Word	2260	8800	02	Word	2510	9488	107	Word	27C0	10176
39	ASCII	2268	8808	82	ASCII	2518	9496	125	ASCII	27C8	10184
	Word	2270	8816		Word	2520	9504	4.5.	Word	27D0	10192
40	ASCII	2278	8824	83	ASCII	2528	9512	126	ASCII	27D8	10200
	Word	2280	8832		Word	2530	9520		Word	27E0	10208
41	ASCII	2288	8840	84	ASCII	2538	9528	127	ASCII	27E8	10216
	Word	2290	8848		Word	2540	9536		Word	27F0	10224
42	ASCII	2298	8856	85	ASCII	2548	9544	128	ASCII	27F8	10224
	Word	22A0	8864		Word	2550	9552		μ 15 C 11	2/10	10232
43	ASCII	22A0 22A8		86	ASCII	2558					
	ASCII	ZZAð	8872		ASCII	2338	9560				

Конфигурация сообщений журнала системы.

Запись журнала си- стемы	Адрес 1-го слова	Кол-во слов	Примечания
Код сообщения	0	1	1
Дата и время *			
Год **	1	1	-
Месяц	2	1	-
Число	3	1	-
Часы	4	1	-
Минуты	5	1	-
Секунды	6	1	-
Десятки миллисекунд	7	1	-

^{*} Дата и время хранится в формате двоичных чисел. ** 2 последние цифры года.

Сообщение:

Код	Сообщение
0	Журнал пуст
1	Ошибка хранения данных (Потеря данных осциллографа с версии ПО 2.02)
2	Резерв
3	Неисправность вн. шины
4	Вн. шина исправна
5	Температура выше нормы
6	Температура в норме
7	Входа I неисправны
8	Входа I исправны
9	Входа U неисправны
10	Входа U исправны
11	МРВ неисправен
12	МРВ исправен
13	Вход Д1-Д8 неиспр.
14	Вход Д1-Д8 испр.
15	Вход Д9-Д16 неиспр.
16	Вход Д9-Д16 испр.
17	Ошибка контрольной суммы уставок
18	Ошибка контрольной суммы данных
19	Ошибка контрольной суммы данных
20	Ошибка журнала системы
21	Ошибка журнала аварий
22	Остановка часов
23	Резерв
24	Резерв
25	Меню – уставки изменены
26	Пароль изменен
27	Сброс журнала системы
28	Сброс журнала аварий
29	Сброс ресурса выключателя
30	Сброс индикации

31	Mamoura rayees vetabox					
32	Изменена группа уставок СДТУ – уставки изменены					
33						
34	Ошибка задающего генератора Рестарт устройства					
	Устройство выключено					
35						
36	Устройство включено					
37	Резерв					
38	Меню сброс осциллографа					
39 40	СДТУ – сброс осциллографа					
	Запись: критическая ошибка устройства					
41-43	Резерв					
44	Неисправность цепей включения					
45	Неисправность цепей отключения					
46	Небаланс АЦП Jaba					
47	Баланс АЦП labc					
48	Несимметрия labc					
49	Симметрия labc					
50	Т. Н. може в постравность					
51	ТН исправен					
52	Небаланс АЦП Uabc					
53	Баланс АЦП Uabc					
54	Несимметрия Uabc					
55	Симметрия Uabc					
56	Uabc < 5B					
57	Uasc > 5B					
58	ТННП внеш. неисправность					
59	ТННП исправен					
60	Частота вне диапазона					
61	Частота в норме					
62	Выключатель отключен					
63	Выключатель включен					
64	Блокировка выключателя					
65	Отказ выключателя					
66	Неисправность выключателя					
67	Внеш.неиспр. выключателя					
68	Неиспр.управ. выключателя					
69	Работа УРОВ					
70	Резерв					
71	Защита отключить					
72	АПВ от благителия					
73	АПВ вн.блокировка					
74	Запуск АПВ 1 крат					
75	Запуск АПВ 2 крат					
76	Запуск АПВ 3 крат					
77	Запуск АПВ 4 крат					
78	АПВ включить					
79-84	Резерв					
85	АВР блокирован					
86	АВР внеш. блокировка					
87	АВР готовность					
88	АВР отключить					
89	АВР включить					

	I ADD						
90	АВР вкл. резерв						
91	АВР откл. резерв						
92	АВР запуск от защиты						
93	АВР запуск команда откл.						
94	АВР запуск по питанию						
95	АВР запуск самооткл.						
96	Кнопка отключить						
97	Кнопка включить						
98	Ключ отключить						
99	Ключ включить						
100	Внешнее отключить						
101	Внешнее включить						
102	СДТУ отключить						
103	СДТУ включить						
104	Основные уставки						
105	Резервные уставки						
106	Внеш.резерв. уставки						
407	Резерв (до версии ПО 3.01)						
107	Внеш. блок-ка команд СДТУ (с версии ПО 3.01)						
108	Меню-основные уставки						
109	Меню-резервные уставки						
110	СДТУ-основные уставки						
111	СДТУ-резервные уставки						
112	АПВ возврат						
113	АПВ возврат F>						
114	АПВ возврат F>>						
115	АПВ возврат F<						
116	АПВ возврат F<<						
117	АПВ возврат F<<						
118	АПВ возврат U>>						
119	АПВ возврат U<						
120	АПВ возврат U<<						
121	АПВ возврат U2>						
122	АПВ возврат U2>>						
123	АПВ возврат U2>>						
124	АПВ возврат Uo>>						
125	АПВ возврат 6022						
126	АПВ возврат ВЗ-2						
127	АПВ возврат ВЗ-2						
128	АПВ возврат ВЗ-4						
129	АПВ возврат ВЗ-5						
130	АПВ возврат ВЗ-6						
131	АПВ возврат ВЗ-7						
132	АПВ возврат ВЗ-8						
133	U<10В Частота недостоверна						
134	U>10В Частота недостоверна U>10В Частота достоверна						
135	АВР Меню блокировка						
136							
	АВР СДТУ блокировка						
137	СДТУ: логика изменена						

138	Меню: запуск логики
139	СДТУ: запуск логики
140	Меню: остановка логики
141	СДТУ: остановка логики
142	Ошибка логики по старту
143	Ошибка логики тайм аут
144	Ошибка логики размер
145	Ошибка логики команда
146	Ошибка логики аргумент
147	Ошибка размера ППЗУ
148	Резерв
149	СПЛ 1*
150	СПЛ 2*
212	СПЛ 64*

^{*} СПЛ 1...СПЛ 64 – сообщения свободно-программируемой логики

8.13 Формат журнала аварий

В журнале аварий может храниться до 32 аварий. При превышении этого числа, каждая новая авария будет записываться на место самой старой аварии. Каждая авария считывается целиком (разбивать аварию на несколько частей не допускается).

Аварии хранятся в 2-х форматах: в словах (Word), в ASCII-коде. На каждую аварию выделено: 28 слов – для формата Word и 48 слов – для ASCII. В таблице 8.13.1 приведены адреса для всех аварий.

Таблица 8.13.1 – Адреса аварий

Nº	Формат	A = 0.00		Кол-во	№ ава-		Адреса		Кол-во
аварии		HEX	DEC	СЛОВ	рии	Формат	HEX	DEC	слов
1	Word	2800	10240	28	17	Word	2C00	11264	28
	ASCII	2818	10264	48	17	ASCII	2C18	11288	48
2	Word	2840	10304	28	18	Word	2C40	11328	28
	ASCII	2858	10328	48	18	ASCII	2C58	11352	48
3	Word	2880	10368	28	19	Word	2C80	11392	28
	ASCII	2898	10392	48	19	ASCII	2C98	11416	48
4	Word	28C0	10432	28	20	Word	2CC0	11456	28
	ASCII	28D8	10456	48	20	ASCII	2CD8	11480	48
5	Word	2900	10496	28	21	Word	2D00	11520	28
3	ASCII	2918	10520	48	21	ASCII	2D18	11544	48
6	Word	2940	10560	28	22	Word	2D40	11584	28
Ü	ASCII	2958	10584	48	22	ASCII	2D58	11608	48
7	Word	2980	10624	28	23	Word	2D80	11648	28
/	ASCII	2998	10648	48	23	ASCII	2D98	11672	48
8	Word	29C0	10688	28	24	Word	2DC0	11712	28
0	ASCII	29D8	10712	48	24	ASCII	2DD8	11736	48
9	Word	2A00	10752	28	25	Word	2E00	11776	28
9	ASCII	2A18	10776	48	23	ASCII	2E18	11800	48
10	Word	2A40	10816	28	26	Word	2E40	11840	28
10	ASCII	2A58	10840	48	26	ASCII	2E58	11864	48
1.1	Word	2A80	10880	28		Word	2E80	11904	28
11	ASCII	2A98	10904	48	27	ASCII	2E98	11928	48
12	Word	2AC0	10944	28	20	Word	2EC0	11968	28
12	ASCII	2AD8	10968	48	28	ASCII	2ED8	11992	48
12	Word	2B00	11008	28	29	Word	2F00	12032	28
13	ASCII	2B18	11032	48	29	ASCII	2F18	12056	48
14	Word	2B40	11072	28	20	Word	2F40	12096	28
	ASCII	2B58	11096	48	30	ASCII	2F58	12120	48
1 15 1	Word	2B80	11136	28	31	Word	2F80	12160	28
	ASCII	2B98	11160	48	31	ASCII	2F98	12184	48
16	Word	2BC0	11200	28	32	Word	2FC0	12224	28
	ASCII	2BD8	11224	48	34	ASCII	2FD8	12248	48

Конфигурация аварии в журнале аварий приведена в таблице 8.13.2.

Таблица 8.13.2 – Конфигурация аварий

	Woi	rd	ASCII		
Запись журнала аварий	Адрес 1-го	Кол-во	Адрес 1-го	Кол-во	
	слова	слов	слова	слов	
1 Дата и время*	0	8	0	8	
2 Код повреждения**	8	1	8	2	
3 Тип повреждения***	9	1	10	2	
4 Значение повреждения	10	1	12	2	
5 Значение Іа	11	1	14	2	
6 Значение Ib	12	1	16	2	
7 Значение Іс	13	1	18	2	
8 Значение I0	14	1	20	2	
9 Значение I1	15	1	22	2	
10 Значение I2	16	1	24	2	
11 Значение In	17	1	26	2	
12 Значение Іг	18	1	28	2	
13 Значение F	19	1	30	2	
14 Значение Uab	20	1	32	2	
15 Значение Ubc	21	1	34	2	
16 Значение Uca	22	1	36	2	
17 Значение U0	23	1	38	2	
18 Значение U1	24	1	40	2	
19 Значение U2	25	1	42	2	
20 Значение Un	26	1	44	2	
21 Значение входов	27	1	46	2	

^{*} Дата и время хранится в формате двоично-десятичных чисел (см. таблицу 8.13.3).

Таблица 8.13.3 – Дата и время (конфигурация)

Дата и время	Адрес 1-го слова	Кол-во слов	Примечания
Сообщение	0	1	1
Год (две последние цифры)	1	1	-
Месяц	2	1	-
Число	3	1	-
Часы	4	1	-
Минуты	5	1	-
Секунды	6	1	-
Десятки миллисекунд	7	1	-

1. Сообщение (сообщения и их коды см. в таблице 8.13.4).

Таблица 8.13.4

Код	Сообщение
0	Журнал пуст
1	Сигнализация
2	Отключение
3	Работа
4	Неуспешное АПВ
5	Возврат
6	Включение
7	ОМП

^{**}Код повреждения (в формате Word):

Таблица 8.13.5

Код	Повреждения
0	
1	По повышению тока I>
2	По повышению тока I>>
3	По повышению тока I>>>
4	По повышению тока I>>>>
5	По повышению тока обратной последовательности I2>
6	По повышению тока обратной последовательности I2>>
7	По повышению тока нулевой последовательности I0>
8	По повышению тока нулевой последовательности I0>>
9	По повышению тока измеренного по нулевому каналу In>
10	По повышению тока измеренного по нулевому каналу In>>
11	По повышению тока высшей гармоники нулевой последовательности I _г >
12	Обрыв провода I2/I1
13	По повышению частоты F>
14	По повышению частоты F>>
15	По понижению частоты F<
16	По понижению частоты F<<
17	По повышению напряжения U>
18	По повышению напряжения U>>
19	По понижению напряжения U<
20	По понижению напряжения U<<
21	По повышению напряжения обратной последовательности U2>
22	По повышению напряжения обратной последовательности U2>>
23	По повышению напряжения нулевой последовательности U0>
24	По повышению напряжения нулевой последовательности U0>>
25	Внешней защиты ВЗ-1
26	Внешней защиты ВЗ-2
27	Внешней защиты ВЗ-3
28	Внешней защиты ВЗ-4
29	Внешней защиты ВЗ-5
30	Внешней защиты ВЗ-6
31	Внешней защиты ВЗ-7
32	Внешней защиты ВЗ-8
33	ОМП

34	Резерв
35	Резерв
36	Резерв
37	Резерв
38	Резерв
39	Резерв
40	Резерв

^{***}Тип повреждения (в формате Word):

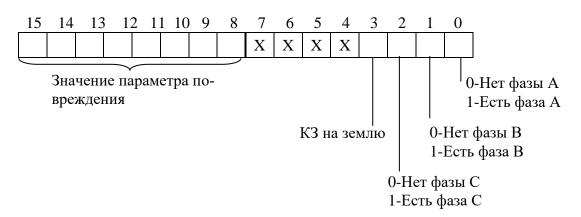


Таблица 8.13.6

Код	Значение параметра повреждения
0	
1	Ток Іг
2	Ток In
3	Ток Іа
4	Ток lb
5	Ток Іс
6	Ток 10
7	Ток I1
8	Ток I2
9	Мощность Pn
10	Резерв
11	Резерв
12	Резерв
13	Мощность Р0
14	Резерв
15	Мощность Р2
16	Частота F
17	Напряжение Un
18	Напряжение Ua
19	Напряжение Ub
20	Напряжение Uc
21	Напряжение U0
22	Напряжение U1
23	Напряжение U2
24	Напряжение Uab
25	Напряжение Ubc
26	Напряжение Uca
27	Обрыв провода
28	OMΠ, L _{K3}

Для расчёта значения повреждения (п. 4 таблицы 8.13.2), значений la; lb; lc; l0; l1; l2; ln; lг; F; Uab; Ubc; Uca; U0; U1; U2; Un (п.п. 5-20 таблицы 8.13.2); а также для расчёта

напряжений Ua; Ub; Uc (таблица 8.13.6, коды 18-20) и LK3 (таблица 8.13.6, код 28) использовать формулы, приведенные в подразделе 8.10 («База данных аналоговых сигналов»).

Расчёт обрыва провода I2/I1 (таблица 8.13.6, код 27) производится по формулам, приведенным в подразделе 8.14 («Формат уставок»).

Для получения значений мощности, выраженных в Рн (таблица 8.13.6, коды 9, 13 и 15), применяются формулы:

$$Pn' = \frac{X \cdot 5}{65536}$$
 $P0' = \frac{X \cdot 40}{65536}$ $P2' = \frac{X \cdot 40}{65536}$

где Pn' – измеренная активная мощность нулевой последовательности, Pн;

Р0′ – расчётная активная мощность нулевой последовательности, Рн;

Р2′ – расчётная активная мощность обратной последовательности, Рн.

Примечание – В журнале аварий отображаются значения мощности, выраженные в Рн.

Для получения значений мощности, выраженных в ваттах, применяются формулы:

$$Pn = Pn' \cdot 256 \cdot I_{TTH\Pi} \cdot K_{THH\Pi}$$

$$P0 = P0' \cdot 256 \cdot I_{TT} \cdot K_{TH}$$

$$P2 = P2' \cdot 256 \cdot I_{TT} \cdot K_{TH}$$

где Pn – измеренная активная мощность нулевой последовательности, Вт;

Р0 – расчётная активная мощность нулевой последовательности, Вт;

Р2 – расчётная активная мощность обратной последовательности, Вт.

8.14 Формат уставок

Для получения достоверных данных уставок необходимо:

1. Сбросить бит (записать 0) функцией 5 по адресу 0х0000:

Запрос:

Адрес устройства	Код функции	Адрес	с бита	Значение бита	0	Контро сум	
01h	05h	00h	00h	00h	00h	МлБ	СтБ

^{2.} Функциями 3 или 4 прочитать данные по адресу 0х1000.

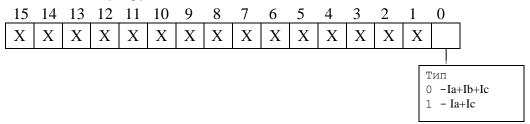
Для сохранения изменений данных уставок необходимо:

- 1. Записать уставки функцией 16 по адресу 0х1000;
- 2. Установить бит функцией 5 по адресу 0х0000:

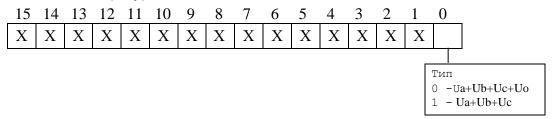
Запрос:

Адрес устройства	Код функции	Адрес	с бита	Значение бита	0	Контро сум	
01h	05h	00h	00h	FFh	00h	МлБ	СтБ

Описание функций приведено в разделе 8.5.


Группа		Наимонования	Адр	ес	Кол-во	Приме-
		Наименование	HEX	DEC	СЛОВ	чание
		Конфигурация ТТ	1000	4096	1	1
		Первичный ток TT	1001	4097	1	16
		Первичный ток ТТНП	1002	4098	1	16
		Максимальный ток нагрузки	1003	4099	1	16
	Измерительный	Не используется	1004	4100	4	-
	канал	Конфигурация ТН	1008	4104	1	2
		Коэффициент ТН	1009	4105	1	2.1
		Внешняя неисправность ТН	100A	4106	1	3
ã		Коэффициент ТННП	100B	4107	1	2.1
TZ		Внешняя неисправность ТННП	100C	4108	1	3
) W	ОМП	Конфигурация ОМП	100D	4109	2	22
и автоматика	Параметры ло- гики	Программные ключи	100F	4111	1	24
9		Номер входа ключа отключить	1010	4112	1	4
la Ta		Номер входа ключа включить	1011	4113	1	4
Ϊ́		Номер входа внеш. отключить	1012	4114	1	4
<u>e</u>		Номер входа внеш. включить	1013	4115	1	4
Входные сигналы		Внешний сигнал сброса сигнали- зации	1014	4116	1	4
â	Внешние сиг-	Внешний сигнал группы уставок	1015	4117	1	4
	налы	Не используется	1016	4118	1	-
		Не используется				-
		Тип интерфейса: 0 – RS485; 1 -	1017	4119	1	_
		Ethernet (с версии ПО 3.01)				_
		Не используется	1018	4120	1	-
		Блокировка СДТУ (с версии ПО 3.01)			'	4
		Не используется	1019	4121	4	-
	Неисправность	Неисправность	101D	4125	5	5

		1 14/145	4000	4400	•	
	Входные ло-	конфигурация L1(И)	1022	4130	2	6
	гические сиг-	конфигурация L2(И)	1024	4132	2	6
	налы	конфигурация L3(И)	1026	4134	2	6
		конфигурация L4(И)	1028	4136	2	6
	Входные ло-	конфигурация L5(ИЛИ)	102A	4138	2	6
	гические сиг-	конфигурация L6(ИЛИ)	102C	4140	2	6
	налы	конфигурация L7(ИЛИ)	102E	4142	2	6
		конфигурация L8(ИЛИ)	1030	4144	2	6
		Номер входа состояния отключения	1032	4146	1	7
		Номер входа состояния включения	1033	4147	1	7
		Внешний сигнал неисправность	1034	4148	1	7
		Блокировка включения	1035	4149	1	7
	Параметры	Время УРОВ	1036	4150	1	3*
	выключателя	Ток УРОВ	1037	4151	1	16
		Импульс сигнала управления	1038	4152	1	3*
		Длительность включения	1039	4153	1	3*
		Контроль цепей управления	103A	4154	1	25
		Сигналы управления	103B	4155	1	8
		конфигурация АПВ	103C	4156	8	9
	Автоматика	конфигурация АВР	1044	4164	9	10
	, ibromarina	не используется	104D	4173	1	-
		конфигурация ЛЗШ	104E	4174	2	11
		конфигурация ВЗ-1	1050	4176	6	12
		конфигурация ВЗ-2	1056	4182	6	12
		конфигурация ВЗ-3	105C	4188	6	12
	Внешние	конфигурация ВЗ-4	1062	4194	6	12
	защиты	конфигурация ВЗ-5	1068	4200	6	12
		конфигурация ВЗ-6	106E	4206	6	12
		конфигурация ВЗ-7	1074	4212	6	12
		конфигурация ВЗ-8	107A	4218	6	12
¥		Конфигурация сети	1080	4224	4	13.1
ВО		Конфигурация I>	1084	4228	6	13
ста		Конфигурация I>>	108A	4234	6	13
a yo		Конфигурация I>>>	1090	4240	6	13
Ш	Токовые за-	Конфигурация I>>>>	1096	4246	6	13
-py	циты Щиты	Конфигурация I2>	109C	4252	6	13
38 I	٦,,,,,,,	Конфигурация I2>>	10A2	4258	6	13
BH8		Конфигурация I0>	10A8	4264	6	13
9 HO		Конфигурация I0>>	10AE	4270	6	13
Основная группа уставо		Конфигурация In>	10B4	4276	6	13
		Конфигурация In>>	10BA	4282	6	13
Α̈́		Конфигурация сети	10C0	4288	4	13.1
яво		Конфигурация I>	10C4	4292	6	13
СТЕ		Конфигурация I>>	10CA	4298	6	13
a 🗸		Конфигурация I>>>	10D0	4304	6	13
Ę	Токовые за-	Конфигурация I>>>>	10D6	4310	6	13
Гру	токовые за- щиты	Конфигурация I2>	10DC	4316	6	13
ж	- 14/11 ОТ	Конфигурация I2>>	10E2	4322	6	13
Резервная группа уставок		Конфигурация I0>	10E8	4328	6	13
è		Конфигурация 10>>	10EE	4334	6	13
၁၉၁		Конфигурация In>	10F4	4340	6	13
<u> </u>		Конфигурация In>>	10FA	4346	6	13


	1		1			1
ая		Конфигурация Іг>	1100	4352	6	13
Основная группа		Не используется	1106	4358	2	-
P P		Конфигурация I2/ I1	1108	4360	4	13.2
0	Дополнитель-	Не используется	110C	4364	20	-
ая	ные защиты	Конфигурация Іг>	1120	4384	6	13
ВНЯ		Не используется	1126	4390	2	-
Резервная группа		Конфигурация I2/ I1	1128	4392	4	13.2
Pe		Не используется	112C	4396	20	-
Ь		Конфигурация F>	1140	4416	8	15
Основная группа		Конфигурация F>>	1148	4424	8	15
HOF Pyr	Защиты по	Конфигурация F<	1150	4432	8	15
ŏ -	частоте	Конфигурация F<<	1158	4440	8	15
		Конфигурация F>	1160	4448	8	15
Резерв- ная груп-		Конфигурация F>>	1168	4456	8	15
Резерв- ная груп		Конфигурация F<	1170	4464	8	15
Ре На		Конфигурация F<<	1178	4472	8	15
		Конфигурация U>	1180	4480	8	14
<u> </u>		Конфигурация U>>	1188	4488	8	14
УП		Конфигурация U<	1190	4496	8	14
<u>d</u>	201114711	Конфигурация U<<	1198	4504	8	14
ая	Защиты напряжения	Конфигурация U2>	11A0	4512	8	14
ВН	напряжения		11A0	4520	8	14
Основная группа		Конфигурация U2>>		4528		
ŏ		Конфигурация U0>	11B0		8	14
		Конфигурация U0>>	11B8	4536	8	14
<u>a</u>		Конфигурация U>	11C0	4544	8	14
УП		Конфигурация U>>	11C8	4552	8	14
ď	Защиты	Конфигурация U<	11D0	4560	8	14
ая		Конфигурация U<<	11D8	4568	8	14
Резервная группа	напряжения	Конфигурация U2>	11E0	4576	8	14
ep		Конфигурация U2>>	11E8	4584	8	14
ခြင		Конфигурация U0>	11F0	4592	8	14
		Конфигурация U0>>	11F8	4600	8	14
		конфигурация вых. лог. ВЛС1	1200	4608	8	19
		конфигурация вых. лог. ВЛС2	1208	4616	8	19
	PLIVORULIO DO	конфигурация вых. лог. ВЛС3	1210	4624	8	19
	Выходные ло-	конфигурация вых. лог. ВЛС4	1218	4632	8	19
	гические сиг- налы	конфигурация вых. лог. ВЛС5	1220	4640	8	19
	палы	конфигурация вых. лог. ВЛС6	1228	4648	8	19
		конфигурация вых. лог. ВЛС7	1230	4656	8	19
		конфигурация вых. лог. ВЛС8	1238	4664	8	19
<u> </u>		конфигурация РЕЛЕ1	1240	4672	2	18
Выходные сигналы		конфигурация РЕЛЕ2	1242	4674	2	18
Ī		конфигурация РЕЛЕЗ	1244	4676	2	18
Ö		конфигурация РЕЛЕ4	1246	4678	2	18
PIE		конфигурация РЕЛЕ5	1248	4680	2	18
дH		конфигурация РЕЛЕ6	124A	4682	2	18
0X	Выходные	конфигурация РЕЛЕ7	124C	4684	2	18
Bb	реле	конфигурация РЕЛЕ8	124E	4686	2	18
_		конфигурация РЕЛЕО конфигурация РЕЛЕ9	1250	4688	2	18
		конфигурация РЕЛЕЭ конфигурация РЕЛЕ10	1250	4690	2	18
		конфигурация РЕЛЕТО конфигурация РЕЛЕ11	1252	4692	2	18
		конфигурация РЕЛЕТТ конфигурация РЕЛЕ12		4694	2	18
			1256			
		конфигурация РЕЛЕ13	1258	4696	2	18
		Не используется	125A	4698	2	-
		Не используется	125C	4700	2	-
		Не используется	125E	4702	2	<u> </u>
	1 редакция 6.04	тажнапапка» Минск	50			www.bemn.b
14()	A P D D D D D I T D O M O D I	CONTRACTOR DESIGNATION OF THE PROPERTY OF THE				- Incuit name b

		конфигурация ИНДИКАТОР1	1260	4704	2	17
		конфигурация ИНДИКАТОР2	1262	4706	2	17
		конфигурация ИНДИКАТОР3	1264	4708	2	17
	Индикаторы	конфигурация ИНДИКАТОР4	1266	4710	2	17
	-	конфигурация ИНДИКАТОР5	1268	4712	2	17
		конфигурация ИНДИКАТОР6	126A	4714	2	17
		конфигурация ИНДИКАТОР7	126C	4716	2	17
		конфигурация ИНДИКАТОР8	126E	4718	2	17
		номер устройства	1270	4720	1	20
Ž K	Конфигурация	скорость порта	1271	4721	1	21
энфиг) рация	устройства	не используется (если порт Ether-	1272	4722	2	-
Конфигу рация		net – IP адрес - с вер. ПО 3.01)				
	Осциллограф	Конфигурация осциллографа	1274	4724	1	23

1. Конфигурация ТТ

2. Конфигурация ТН

2.1. Коэффициент ТН (Ктн) и коэффициент ТННП (Ктннп).

Внутри микропроцессорных реле Ктн и Ктннп представляют собой 2-х байтное целое число X.

$$X = K_{\it TH(\it THHII)} \cdot 256$$
 ; $K_{\it TH(\it THHII)} = \frac{X}{256}$, если старший бит X равен нулю;

$$X = \frac{K_{\mathit{TH}(\mathit{THHII})} \cdot 256}{1000} + 32768; \qquad K_{\mathit{TH}(\mathit{THHII})} = \frac{(X - 32768) \cdot 1000}{256}, \quad$$
если старший бит X равен единице.

3. Неисправность

Номер входа неисправности соответствует значениям, приведенным в приложении 3.

4. Вход ключа

Номер входа ключа соответствует значениям, приведенным в приложении 3.

5. Конфигурация реле «НЕИСПРАВНОСТЬ».

Наименование	Адрес 1-го слова	Кол-во слов	Прим.
конфигурация реле «Неисправность»	0	1	1г*
импульс реле «Неисправность»	1	1	3*

6. Конфигурация логических входных сигналов.

Логические сигналы «И» формируются, как сумма по «И» дискретных сигналов и инверсных дискретных сигналов. Логические сигналы «ИЛИ» формируются, как сумма по «ИЛИ» дискретных сигналов и инверсных дискретных сигналов. Конфигурация входного логического сигнала занимает 2 слова (32 бита).

1 слово сигнал	2 слово сигнал	Код (НЕХ)	Код (DEC)
Д1	Д9	1	1
инв.Д1	инв.Д9	101=100+1	257=256+1
Д2	Д10	2	2
инв.Д2	инв.Д10	202=200+2	514=512+2
Д3	Д11	4	4
инв.ДЗ	инв.Д11	404=400+4	1028=1024+4
Д4	Д12	8	8
инв.Д4	инв.Д12	808=800+8	2056=2048+8
Д5	Д13	10	16
инв.Д5	инв.Д13	1010=1000+10	4112=4096+16
Д6	Д14	20	32
инв.Д6	инв.Д14	2020=2000+20	8224=8192+32
Д7	Д15	40	64
инв.Д7	инв.Д15	4040=4000+40	16448=16384+64
Д8	Д16	80	128
инв.Д8	инв.Д16	8080=8000+80	32896=32768+128

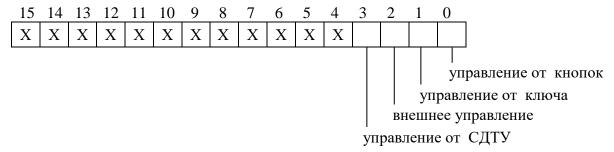
Т.е., например, для Д1 (остальные аналогично):

Пример:

Логический сигнал представляет собой сумму Д4 и инв. Д2, тогда его значение вычисляется как 514+8=522

_		_			_	-	_		-	-		_	2		-
0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0

7. Список сигналов выключателя.


Номер входа сигнала выключателя соответствует значениям, приведенным в приложении 3.

8. Конфигурация сигнала управления.

Конфигурация задается в первых 4-х битах:

0 – контроль (разрешен только контроль и запись событий в журнал системы),

1 – разрешено (разрешено управление выключателем).

9. Конфигурация АПВ

24.10.1411.711.7						
Наименование	Адрес 1-го	Кол-во	Прим.			
Паліменование	слова	СЛОВ	тъин.			
конфигурация АПВ	0	1	1a*			
номер входа блокировки АПВ	1	1	2*			
время блокировки АПВ	2	1	3*			
время готовности АПВ	3	1	3*			
время 1 крата АПВ	4	1	3*			
время 2 крата АПВ	5	1	3*			
время 3 крата АПВ	6	1	3*			
время 4 крата АПВ	7	1	3*			

10. Конфигурация АВР

Hamanaaan	Адрес 1-го	Кол-во	Пости
Наименование	слова	слов	Прим.
конфигурация АВР	0	1	1б*
номер входа АВР блокировка	1	1	2*
номер входа АВР сброс блокировки	2	1	2*
номер входа сигнала «запуск ABP»	3	1	2*
номер входа АВР сраб	4	1	2*
уставка по времени АВР сраб	5	1	3*
номер входа АВР возврата	6	1	2*
уставка по времени АВР возврата	7	1	3*
задержка откл. Резерва	8	1	3*
резерв	9	1	-

11. Конфигурация ЛЗШ

Наименование	Адрес 1-го	Кол-во	Прим
Паліменование	слова	СЛОВ	трим.
Конфигурация ЛЗШ	0	1	1в*
Уставка ЛЗШ	1	1	8.2*

12. Конфигурация внешних защит

Наименование	Адрес 1-го	Кол-во	Прим.
Паліменование	слова	СЛОВ	тъим.
конфигурация ВЗ	0	1	7*
номер входа блокировки ВЗ	1	1	2*
номер входа срабатывания ВЗ	2	1	2*
уставка по времени срабатывания ВЗ	3	1	3*
номер входа возврата ВЗ	4	1	4*
уставка по времени возврата ВЗ	5	1	3*

13. Конфигурация токовых защит (I>, I>>>, I>>>, I>>>, I0>>, I0>>, In>>, I2>>, I2>>, I2>>, I2>>, I2>>, I3.

	. , , ,	, , , , ,	· , · , · , · , · , · ,
Наименование	Адрес 1-го	Количество	Прим.
Паименование	слова	СЛОВ	т іриім.
конфигурация	0	1	5а*; 5б*; 5в*
номер входа блокировки	1	1	2*
уставка срабатывания	2	1	8.1*; 8.2*
уставка по времени срабатывания	3	1	3*
уставка пуска по U	4	1	8.4*
уставка по времени ускорения	5	1	3*

13.1. Конфигурация параметров сети

тели пери урадия парашетрев сети				
Наименование	Адрес 1-го слова	Кол-во слов	Диапазон значений	Измерение
Угол макс чувствительности I	0	1	0 ÷360	град
Угол макс чувствительности I0	1	1	0 ÷360	град
Угол макс чувствительности In	2	1	0 ÷360	град
Угол макс чувствительности I2	3	1	0 ÷360	град

13.2. Конфигурация защит от обрыва провода (I2/I1)

Наименование	Адрес 1-го слова	Кол-во слов	Прим.
Конфигурация	0	1	5г*
Номер входа блокировки	1	1	2*
Уставка срабатывания	2	1	8.3*
Уставка по времени срабатывания	3	1	3*

14. Конфигурация защит напряжения

Наименование	Адрес 1-го	Кол-во	Прим.
Паименование	слова	СЛОВ	трим.
конфигурация	0	1	6*
номер входа блокировки	1	1	2*
уставка срабатывания	2	1	8.4*
уставка по времени срабатывания	3	1	3*
уставка возврата	4	1	8.4*
уставка по времени возврата	5	1	3*
резерв	6	2	-

15. Конфигурация защит по частоте

Наименование	Адрес 1-го	Кол-во	Прим.
Таименование	слова	слов При	
конфигурация	0	1	7*
номер входа блокировки	1	1	2*
уставка срабатывания	2	1	8.4*
уставка по времени срабатывания	3	1	3*
уставка возврата	4	1	8.4*
уставка по времени возврата	5	1	3*
резерв	6	2	-

16. Измерительный канал и ток УРОВ

Значение	Диапазон значений	Измерение
Номинальный первичный ток фазного трансфор- матора тока	0÷3000* 0÷5000**	А
Номинальный первичный ток трансформатора то- ка нулевой последовательности	0÷100* 0÷1000**	А
Номинальный ток нагрузки	0÷40	Ін
Максимальный ток нагрузки	0÷40	Ін
Ток УРОВ	0÷40	Ін
* в версии 1.12 ПО ** с версии 1.14 ПО		

17. Конфигурация индикаторов

Наименование	Адрес 1-го сло-	Кол-во	Прим
Паименование	ва	слов	Прим.
тип сигнала	0	1	9*
сигнал сброса индикатора	1	1	10*

18. Конфигурация выходных реле

Наименование	Адрес 1-го слова	Кол-во слов	Прим.
тип сигнала	0	1	9*
импульс реле	1	1	3*

19. Конфигурация логических выходных сигналов

Конфигурация выходного логического сигнала занимает 8 слов. Выходной логический сигнал формируется как сумма по «ИЛИ» из используемых входных сигналов (для каждого бита 0-нет сигнала, 1-есть). Значение логического сигнала равно сумме кодов используемых сигналов.

№ бита	код	1 слово	2 слово	3 слово	4 слово	5 слово	6 слово	7 слово	8 слово
0	1	Откл. выкл.	Д1	Л1	ИО I2>	ИО F>	ИО U2>	Резерв	Резерв
1	2	Вкл. выкл.	Д2	Л2	СРАБ І2>	СРАБ F>	СРАБ U2>	Резерв	Резерв
2	4	Неисправность	Д3	Л3	ИО I2>>	ИО F>>	ИО U2>>	Резерв	Резерв
3	8	Гр. Уставок	Д4	Л4	СРАБ I2>>	СРАБ Б>>	СРАБ U2>>	Резерв	Резерв
4	16	Резерв	Д5	Л5	<0I ON	ИО F<	ИО U0>	Резерв	Резерв
5	32	Сигнализация	Д6	Л6	СРАБ І0>	СРАБ F<	СРАБ U0>	Резерв	Резерв
6	64	Авария	Д7	Л7	<01 ОМ	ИО F<<	ИО U0>>	Резерв	Резерв
7	128	Земля	Д8	Л8	СРАБ І0>>	СРАБ F<<	СРАБ U0>>	Резерв	Резерв
8	256	АВР вкл.	Д9	<i on<="" td=""><td>ИО In></td><td>ио U></td><td>СРАБ ВЗ-1</td><td>Резерв</td><td>Резерв</td></i>	ИО In>	ио U>	СРАБ ВЗ-1	Резерв	Резерв
9	512	АВР откл.	Д10	СРАБ I>	CPAБ In>	СРАБ U>	СРАБ ВЗ-2	Резерв	Резерв
10	1024	АВР блок	Д11	ИО I>>	ИО Іп>>	ИО U>>	СРАБ ВЗ-3	Резерв	Резерв
11	2048	Резерв	Д12	СРАБ І>>	СРАБ Іп>>	СРАБ U>>	СРАБ ВЗ-4	Резерв	Резерв
12	4096	Работа ЛЗШ	Д13	ИО I>>>	ИО Іг>	ИО U<	СРАБ ВЗ-5	Резерв	Резерв
13	8192	Работа УРОВ	Д14	СРАБ І>>>	СРАБ Іг>	СРАБ U<	СРАБ ВЗ-6	Резерв	Резерв
14	16384	Вкл. по АПВ	Д15	ИО I>>>>	ИО I2/I1	ИО U<<	СРАБ ВЗ-7	Резерв	Резерв
15	32768	Ускорение	Д16	СРАБ І>>>>	СРАБ І2/І1	СРАБ U<<	СРАБ ВЗ-8	Резерв	Резерв

20. Номер устройства:

Диапазон значений: 1÷247.

21. Скорость порта (бит/с):

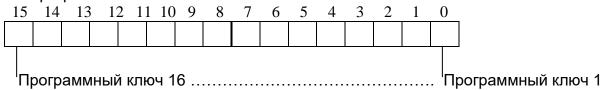
0 - 1200	2 - 4800	4 – 19200	6 – 57600
1 - 2400	3 - 9600	5 - 38400	7 – 115200

22. Конфигурация ОМП

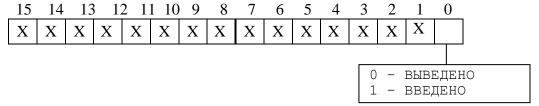
Наименование	Адрес 1-го слова	Кол-во слов	Прим.
Конфигурация ОМП	0	1	1в*
Удельное индуктивное сопротивле- ние линии	1	1	11*

23. Конфигурация осциллографа

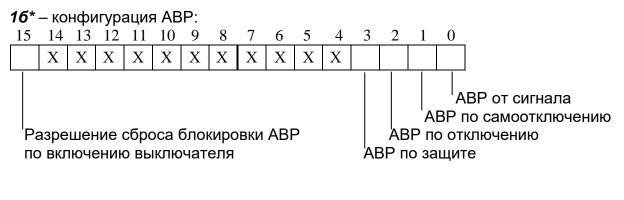
Конфигурация осциплографа в версиях 2.00; 2.1 – 3.01 ПО:


- 0 одна перезаписываемая осциллограмма
- 1 две перезаписываемые осциллограммы
- 2 три перезаписываемые осциллограммы
- 3 четыре перезаписываемые осциллограммы
- 4 пять перезаписываемых осциллограмм
- 5 шесть перезаписываемых осциллограмм
- 6 семь перезаписываемых осциллограмм
- 7 восемь перезаписываемых осциллограмм
- 8 девять перезаписываемых осциллограмм
- 9 десять перезаписываемых осциллограмм
- 10 11 перезаписываемых осциллограмм
- 11 12 перезаписываемых осциллограмм
- 12 12 перезаписываемых осциплограмм 12 — 13 перезаписываемых осциплограмм
- 12 13 перезаписываемых осциплограмм
- 13 14 перезаписываемых осциллограмм
- 14 15 перезаписываемых осциллограмм
- 15 16 перезаписываемых осциллограмм Конфигурация осциллографа (в версиях 1.15 – 1.17 ПО):
- 0 одна неперезаписываемая осциллограмма;
- 1 одна перезаписываемая осциллограмма;
- 2 две перезаписываемые осциллограммы
- 3 три перезаписываемые осциллограммы;
- 4 четыре перезаписываемые осциллограммы;
- 5 пять перезаписываемых осциллограмм;
- 6 шесть перезаписываемых осциллограмм;
- 7 семь перезаписываемых осциллограмм

- 16 17 перезаписываемых осциллограмм
- 17 18 перезаписываемых осциллограмм
- 18 19 перезаписываемых осциллограмм
- 19 20 перезаписываемых осциллограмм
- 20 21 перезаписываемая осциллограмма
- 21 22 перезаписываемые осциллограммы
- 22 23 перезаписываемые осциллограммы
- 23 24 перезаписываемые осциллограммы
- 24 25 перезаписываемых осциллограмм
- 25 26 перезаписываемых осциллограмм
- 26 27 перезаписываемых осциллограмм
- **27** 28 перезаписываемых осциллограмм
- 28 29 перезаписываемых осциллограмм
- 29 30 перезаписываемых осциллограмм
- 30 31 перезаписываемая осциллограмма
- 31 32 перезаписываемые осциллограммы


Конфигурация осциллографа (до версии 1.15 ПО):

- 0 одна осциллограмма;
- одна перезаписываемая осциллограмма;
- две перезаписываемые осциллограммы



25. Контроль цепей управления:

1а* - конфигурация АПВ:

12* - конфигурация реле «НЕИСПРАВНОСТЬ»:

2* - номер входа блокировки

Номер входа блокировки соответствует значениям, приведенным в приложении 3.

3* - уставка по времени

Внутри микропроцессорных реле уставка по времени представляет собой число X: X=T /10, где T - уставка по времени, мс.

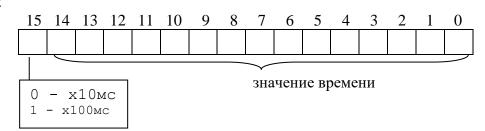
158

Если T>300000 мс, то X=(T/100) + 32768.

Обратное преобразование:

Если $X = 0 \div 32767$, то:

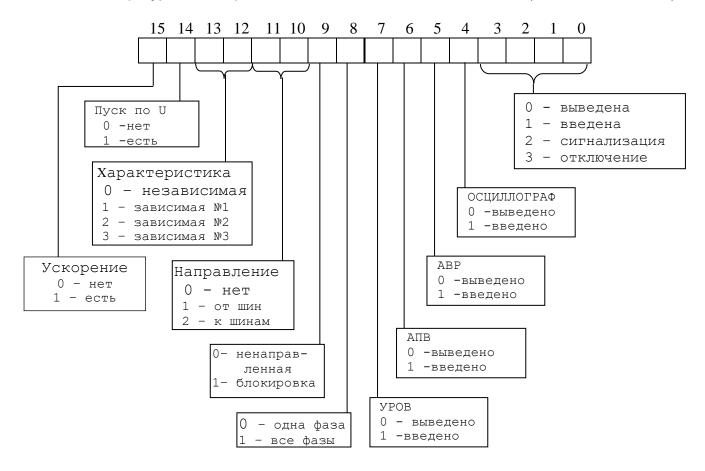
T=X·10 мс.

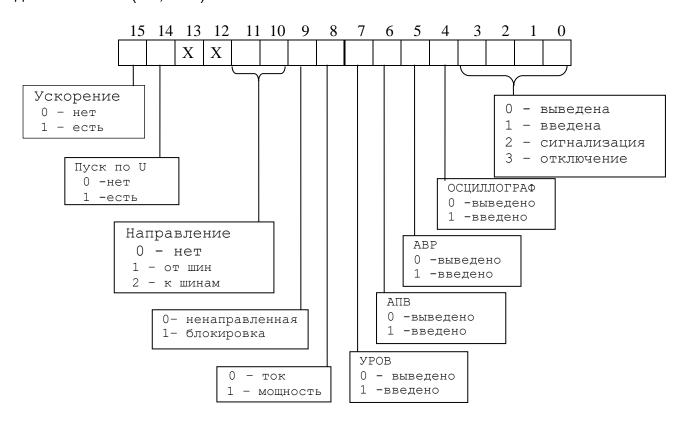

если $X = 32768 \div 65535$, то

 $T=(X - 32768) \cdot 100 \text{ MC}$

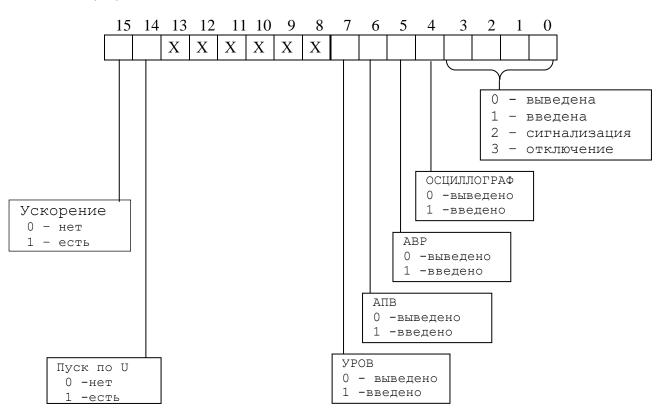
Пример:

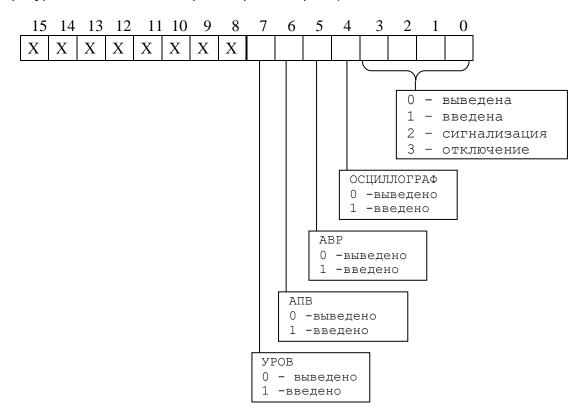
Уставка по времени T=4500 мс будет представлена числом 450, Уставка по времени T=450000 мс будет представлена числом 37268.

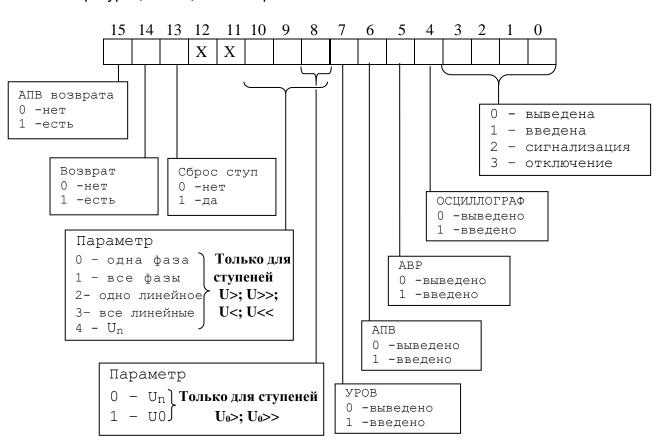

T.e.:

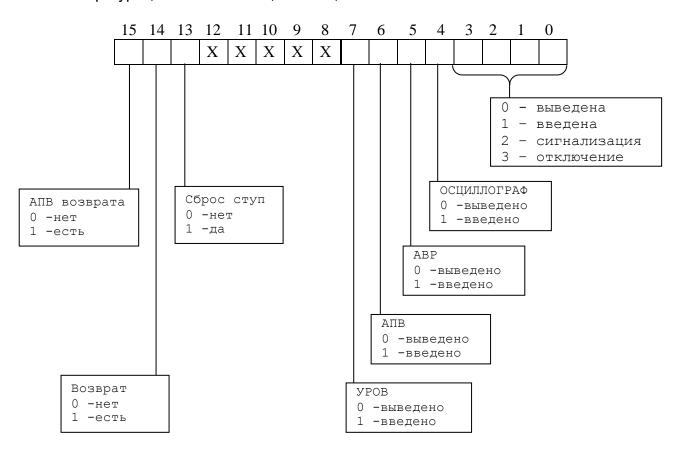

4* - номер входа.

Номер входа соответствует значениям, приведенным в Приложении 3.


5а* – конфигурация направленной защиты от повышения тока (I>, I>>, I>>>, I>>>):


56* – конфигурация направленной защиты от повышения тока нулевой последовательности (I0>, I0>>, In>, In>>) и направленной защиты от повышения тока обратной последовательности (I2>, I2>>):


5е* – Конфигурация защиты от повышения тока высшей гармоники нулевой последовательности (Iг>):


52* - Конфигурация защиты от обрыва провода (I2/I1):

6* - конфигурация защит по напряжению

7* - конфигурация внешних защит и защит по частоте

- **8*** Внутри микропроцессорных реле уставка представляет собой 2-х байтное целое число X.
 - **8.1*** Уставки по токам In, I_г:

$$X = \frac{65536 \cdot Y}{5}$$
 , где Y — значение уставки, I_H.

Обратное преобразование:

$$Y = \frac{X \cdot 5}{65536}$$

8.2* Уставки по остальным токам или мощности:

$$X = \frac{65536 \cdot Y}{40}$$
 , где Y — значение уставки, Ін (Рн).

Обратное преобразование:

$$Y = \frac{X \cdot 40}{65536}$$

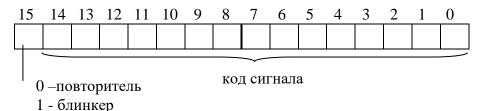
8.3* Уставки по отношению I2/I1:

$$X = \frac{65536 \cdot Y}{100}$$
, где Y — значение уставки, %.

Обратное преобразование:

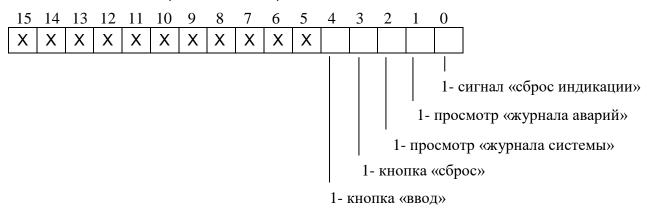
$$Y = \frac{X \cdot 100}{65536}$$

8.4* Уставки по напряжению и частоте:


$$X = Yx256$$
.

где Y – значение уставки (в вольтах – для уставок по напряжению, в герцах – для уставок по частоте).

Обратное преобразование:


$$Y = X/256$$

9*- тип сигнала индикаторов и выходных реле

Код сигнала соответствует значениям, приведенным в приложении 3 (таблица 4).

10*- сигнал сброса индикатора

11* Внутри микропроцессорных реле удельное индуктивное сопротивление линии представляет собой число X:

$$X = X_{УД} \cdot 1000,$$

где X_{УД} – удельное индуктивное сопротивление линии, Ом/км (диапазон значений от 0 до 1).

Обратное преобразование:

$$X_{YI} = X/1000$$

8.15 Формат осциллограммы

1) Формат осциллограммы в версиях ПО 1.15-1.17 и 2.00,2.xxS, 2.01

Таблица 8.15.1 - Режимы работы осциллографа в МР741 с версий ПО 1.15 - 1.17:

1 4071	Taominga of total it on while passers obtained passes in the Boponium of the										
Код	Режим										
0	Одна неперезаписываемая осциллограмма, длительность записи: 5916 мс										
1	Одна перезаписываемая осциллограмма, длительность записи: 2958 мс (LEN ONE OSC)										
2	Две перезаписываемые осциллограммы, длительность записи каждой: 1972 мс										
3	Три перезаписываемые осциллограммы, длительность записи каждой: 1479 мс										
4	Четыре перезаписываемые осциллограммы, длительность записи каждой: 1183 мс										
5	Пять перезаписываемых осциллограмм, длительность записи каждой: 986 мс;										
6	Шесть перезаписываемых осциллограмм, длительность записи каждой: 845 мс;										
7	Семь перезаписываемых осциллограмм, длительность записи каждой: 739 мс										

Таблица 8.15.2 - Режимы работы осциллографа в МР741 с версии 2.00 ПО:

Код		Режим	Код Режим		ежим	Код Режим			Код	Pe	Режим	
1	2 3		1 2 3 1 2 3		3	1	2	3				
0	1	32256(LEN ONE OSC)	8	9	6451	16	17	3584	24	25	2481	
1	2	21504	9	10	5864	17	18	3395	25	26	2389	
2	3	16128	10	11	5376	18	19	3225	26	27	2304	
3	4	12902	11	12	4962	19	20	3072	27	28	2224	
4	5	10752	12	13	4608	20	21	2932	28	29	2150	
5	6	9216	13	14	4300	21	22	2804	29	30	2081	
6	7	8064	14	15	4032	22	23	2688	30	31	2016	
7	8	7168	15	16	3794	23	24	2580	31	32	1954	

Примечания

Таблица 8.15.3 - Режимы работы осциллографа в MP741 с версии **2.xxS** ПО:

Код	Режим	Код	Режим	Код	Режим	Код	Режим
0	15872(LEN ONE OSC)	9	2885	18	1587	27	1094
1	10581	10	2645	19	1511	28	1058
2	7936	11	2441	20	1442	29	1024
3	6348	12	2267	21	1380	30	992
4	5290	13	2116	22	1322	31	961
5	4534	14	1984	23	1269		
6	3968	15	1867	24	1220		
7	3527	16	1763	25	1175		
8	3174	17	1670	26	1133		

Для чтения осциллограмм необходимо:

A) Прочитать конфигурацию осциллографа по адресу 1274h размером 1 слово (функции 3 и 4):

¹ Графа 2 – Количество перезаписываемых осциллограмм

² Графа **3** – Длительность каждой осциллограммы

- Б) Прочитать журнал осциллографа:
 - 1) Установить индекс страницы журнала осциллографа в 0;
- 2) Записать по адресу 800h 1 слово со значением индекса страницы журнала осциллографа (функция 6);
- 3) Прочитать по адресу 800h одну страницу журнала осциллографа размером 20 (14h) слов (функции 3 и 4);
 - 4) Увеличить индекс страницы журнала осциллографа на 1;
- 5) Выполнять пункты 2; 3; 4 пока не будет прочитана страница, полностью заполненная значениями [0], или пока признак готовности осциллограммы (READY) не станет равным 0. В этом случае можно считать журнал осциллографа прочитанным.

Таблица 8.15.4 - Структура одной записи журнала осциллографа (32 байта)

Наименова-	Адрес	Количество	Значение
ние	1-го слова	слов	
DATATIME	0	8	Время аварии (см. табл. 8.13.3)
READY	8	2	Признак готовности осциллограммы (должен быть ра-
			вен 0, если он не равен 0, то осциллограмма не готова)
POINT	10	2	Адрес начала блока текущей осциллограммы в массиве
			данных (в словах)
BEGIN	12	2	Адрес аварии в массиве данных (в словах)
LEN	14	2	Размер осциллограммы (в отсчётах)*
AFTER	16	2	Размер после аварии (в отсчётах)
ALM	18	1	Номер (последней) сработавшей защиты (см. табл.
			8.13.5)
REZ	19	1	Размер одного отсчёта (в словах)
* 1 отсчёт ра	авен 9 словал	и (18 байт)	·

Таблица 8.15.5 – Структура данных одного отсчета осциллографа

			Смещ	ение		•	•	Параметр							
			0					la							
1												lb			
2												lc			
3												In			
4											Į	Ja			
5											Į	Jb			
			6					Uc							
			7					Un							
			8					D*							
где D*	имее	г след	ующи	й вид:											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1

Формула приведения для la, lb, lc:

$$I_{a,b,c} = 40 \cdot \sqrt{2} \cdot K_{TT} \left(\frac{X - 32768}{32768} \right);$$

формула приведения для In:

$$I_n = 5 \cdot \sqrt{2} \cdot K_{TTHT} \left(\frac{X - 32768}{32768} \right),$$

где K_{TT} – первичный ток ТТ (см. конфигурацию устройства – уставки); K_{TTHII} – первичный ток ТТНП (см. конфигурацию устройства – уставки).

Формула приведения для Ua, Ub, Uc:

$$U_{a,b,c} = 256 \cdot \sqrt{2} \cdot K_{TH} \left(\frac{X - 32768}{32768} \right)$$

Формула приведения для Un:

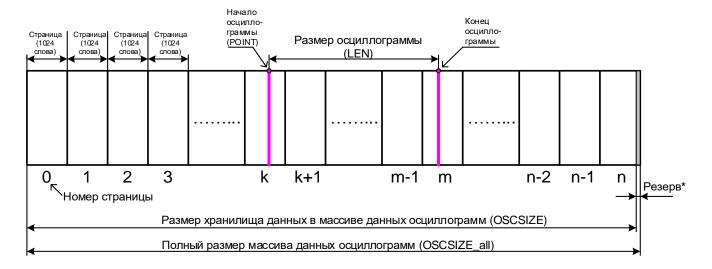
$$U_n = 256 \cdot \sqrt{2} \cdot K_{THHII} \left(\frac{X - 32768}{32768} \right)$$

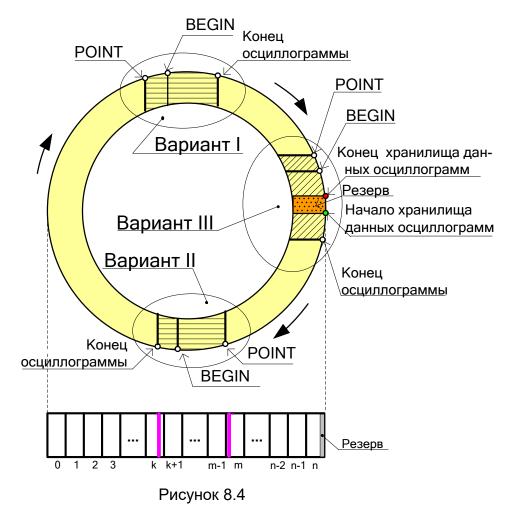
где K_{TH} – коэффициент ТН (см. конфигурацию устройства – уставки); K_{THHII} – коэффициент ТННП (см. конфигурацию устройства – уставки).

- В) Прочитать осциллограмму:
- 1) Рассчитать индекс страницы, с которой начинается осциллограмма [STRINDEX]:

STRINDEX = POINT / OSCLEN

- 2) Записать по адресу 900h одно слово со значением индекса страницы начала осциллограммы (функция 6);
- 3) Прочитать по адресу 900h осциллограмму размером, указанным в конфигурации осциллографа в поле «Код режима работы осциллографа» (функции 3 и 4):
- определить адрес начала и окончания осциллограммы в массиве данных осциллограмм (см. рисунок 8.3).




Рисунок 8.3

* Резерв зарезервированной области данных (REZERV_OSC) рассчитывается:

OSCSIZE = LEN ONE OSC · REZ · 2

Примечание - Размер одной перезаписываемой осциплограммы (LEN ONE OSC) см. таблицы 8.15.1 – 8.15.3; REZ – размер одного отсчета (в словах) см. таблицу 8.15.4.

Протокол связи «MP-CETЬ» обеспечивает считывание осциллограмм из массива данных в циклическом режиме (см. рисунок 8.4), при этом в зависимости от того, в какой сектор кольцевого цикла ("Вариант I» или «Вариант II») попала искомая осциллограмма адрес аварии (BEGIN) может быть больше или меньше адреса начала блока текущей осциллограммы (POINT). При чтении осциллограммы область «Резерв» в массиве данных должна быть исключена.

- выделить искомую осциллограмму из хранилища данных осциллограмм (рисунок 8.5) и прочесть её содержимое (при чтении осциллограммы выполняется её <u>переворот</u> – см. рисунок 8.6).

Примечание – Если при чтении осциллограммы был достигнут конец размера хранилища и осциллограмма ещё не дочитана («Вариант III» на рисунке 8.4), то дочитывать её следует с нулевой страницы.

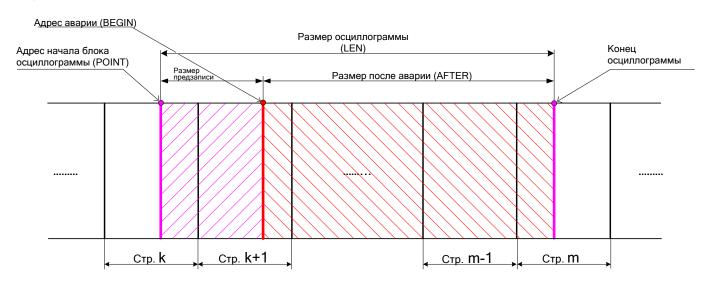


Рисунок 8.5

4) Для чтения другой осциллограммы вновь выполнить пункты 1; 2; 3.

Размер одной страницы осциллограммы -1024 слов [OSCLEN].

Полный размер массива данных осциллограмм:

- для версий ПО 1.15 1.17 53248 слов (52 страницы);
- для версий ПО 2.00, 2.01 1032192 слова (1008 страниц).

Размер хранилища данных в массиве данных осциллограмм – 53244 слова [OSCSIZE] для версий ПО 1.15 – 1.17 и 1032192 слова для версий ПО с 2.00.

Расчёт байта, с которого начинается осциллограмма, в странице:

STARTBYTE = POINT / OSCLEN

ПЕРЕВОРОТ ОСЦИЛЛОГРАММЫ:

b = LEN - AFTER

Если BEGIN меньше POINT, то:

c = BEGIN + OSCSIZE - POINT

Если BEGIN больше POINT, то:

c = BEGIN - POINT

START = c - b

Если START меньше 0, то:

START = START + LEN•REZ

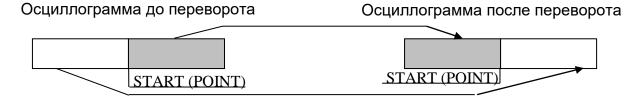


Рисунок 8.6

2) Формат осциллограммы до версии ПО 1.15

В устройстве может содержаться одна осциллограмма, одна перезаписываемая или две перезаписываемые осциллограммы, в зависимости от конфигурации, указаной в устройстве.

Для чтения осциллограмм необходимо:

- а) прочитать конфигурацию осциллографа по адресу 1274h размером 1 слово (функции 3 и 4),
- где 0 одна осциллограмма;
 - 1 одна перезаписываемая осциллограмма;
 - 2 две перезаписываемые осциллограммы
- б) прочитать число осциллограмм по адресу 3F00h размером 1 слово (функции 3 и 4):
 - 1) для одной осциллограммы:
 - 0- нет;
 - 1- есть одна осциллограмма
 - 2) для одной перезаписываемой осциллограммы:
 - 0- нет:
 - 1- есть одна осциллограмма;
 - 2- есть одна осциллограмма
 - 3) для двух перезаписываемых осциллограмм:
 - 0- нет:
 - 1- есть одна осциллограмма;
 - 2- есть две осциллограммы;
 - 3- есть две осциллограммы

в) записать номер читаемой осциллограммы по адресу 3F02h (функция 6);

г) прочитать конфигурацию осциллограммы по адресу 3C00h размером 14 слов (функции 3 и 4)

смещение	значение
в байтах	
0-15	Дата-время
16-17	Частота дискретизации
18-19	Количество аналоговых сигналов
20-21	Количество дискретных сигналов
22-23	Размер осциллограммы (p ´), в словах
24-25	Положение аварии относительно начала (a´), в словах
26-27	Количество отсчетов после аварии (k ′)

Один отсчет занимает 9 слов (18 байт).

Структура отсчета:

смещение в байтах	Значение (Х)
0	канал 1 (ток фазы А)
2	канал 2 (ток фазыВ)
4	канал 3 (ток фазы С)
6	канал 4 (ток фазы 0)
8	канал 5 (фазное напряжение фазы А)
10	канал 6 (фазное напряжение фазы В)
12	канал 7 (фазное напряжение фазы С)
14	канал 8 (напряжения нулевой последовательности U₀)
16	канал 9 (дискретные входы Д1-Д16*). Каждый бит – это состояние входа

^{*}Дискретные входы имеют следующий вид:

_ 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1

Формула приведения для канала 1-3:

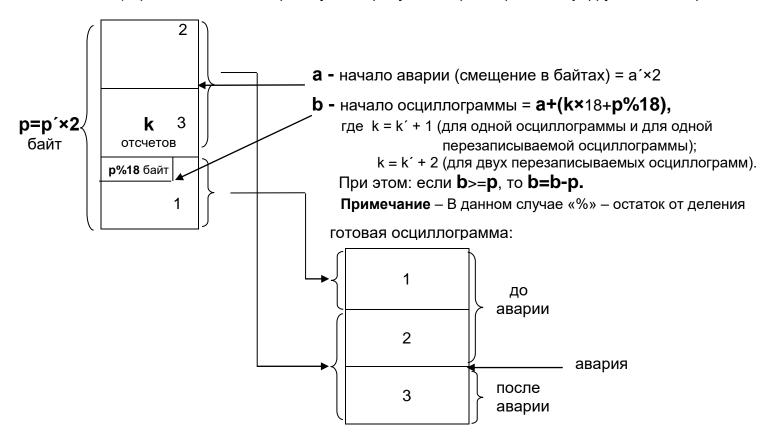
$$I_{a,b,c} = \frac{X - 32768}{32768} \cdot K_{TT} \cdot 40 \cdot \sqrt{2}$$
;

формула приведения для канала 4:

$$I_n = \frac{X - 32768}{32768} \cdot K_{TTHT} \cdot 5 \cdot \sqrt{2}$$
,

где K_{TT} — первичный ток ТТ (см. конфигурацию устройства — уставки); $K_{TTH\Pi}$ — первичный ток ТТНП (см. конфигурацию устройства — уставки).

Формула приведения для канала 5-7:


$$U_{a,b,c} = \frac{X - 32768}{32768} \cdot K_{TH} \cdot 256 \cdot \sqrt{2}$$

Формула приведения для канала 8:

$$U_{n} = \frac{X - 32768}{32768} \cdot K_{THHIT} \cdot 256 \cdot \sqrt{2}$$

где K_{TH} – коэффициент ТН (см. конфигурацию устройства – уставки); K_{THHII} – коэффициент ТННП (см. конфигурацию устройства – уставки).

д) прочитать осциллограмму по адресу 4000h размерностью **р** (функции 3 и 4)

3) Сброс осциллографа

Сброс осциллографа осуществляется записью 0000 по адресу 901h (функция 6).

9 ПОДГОТОВКА И ВВОД В ЭКСПЛУАТАЦИЮ

Монтаж, наладка и эксплуатация устройства должны отвечать требованиям ГОСТ 12.2.007.0-75, "Правил техники безопасности при эксплуатации электроустановок" (ПТБ) и "Правил устройства электроустановок " (ПУЭ);

Устройство закрепляется на вертикальной панели, двери релейного отсека КРУ или на поворотной раме с помощью четырех винтов.

Присоединение цепей осуществляется с помощью клеммных колодок пружинного и винтового (для токовых входов) типа — диаметром 4 мм для проводов сечением до 2,5 мм². Допускается использование как одно-, так и многожильных проводников. Необходимо производить зачистку изоляции проводника на длину (6..10) мм. Проводники в пружинных (рис.9.1 и рис.9.2) и винтовых (рис.9.3) клеммных колодках подсоединяются с помощью отвертки.

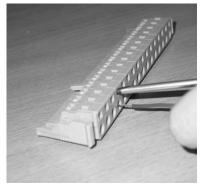


Рисунок 9.1

Рисунок 9.2

Рисунок 9.3

Электрическое сопротивление между приспособлением для заземления и каждой доступной прикосновению металлической нетоковедущей частью устройства должно быть не более 0,1 Ом. Приспособление для заземления устройства не должно иметь лакокрасочного покрытия.

При внешнем осмотре устройства необходимо убедиться в целостности пломб и корпуса, отсутствии видимых повреждений и дефектов, наличии маркировки.

При подаче питания на MP741 убедиться в наличии подсветки жидкокристаллического индикатора (ЖКИ) и появлении первого кадра меню. При отсутствии нажатий на клавиатуру в течение 3 мин, подсветка ЖКИ гаснет. При первом нажатии на любую кнопку управления включается подсветка ЖКИ, при последующих, должна происходить смена кадров на ЖКИ в соответствии с картой меню.

МР741 проводит непрерывную самодиагностику. В случае обнаружения неисправности будет сформирована запись в журнале событий и загорится индикатор 10 КОНТРОЛЬ (см. рисунок 7.1). Состояние устройства, наличие или отсутствие неисправностей определяется путём просмотра меню «Диагностика».

В случае выполнения системы РЗА на постоянном оперативном токе для правильной работы устройства контроля изоляции (УКИ) необходимо использовать резисторы, подключаемые параллельно дискретным входам. Рекомендуется при настройке УКИ на:

- 20 кОм использовать резисторы 15 кОм;
- 40 кОм использовать резисторы 30 кОм.

10 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 10.1 В данном разделе определены виды, периодичность и объёмы технического обслуживания микропроцессорных реле (МР). Плановое техническое обслуживание МР следует по возможности совмещать с проведением ремонта основного оборудования. При проведении технического обслуживания должны соблюдаться требования ПУЭ и ПТБ, а также инструкций по технике безопасности предприятия, эксплуатирующего МР.
- 10.2 С периодичностью 1 раз в 3 мес на подстанциях с дежурным персоналом и не реже одного раза в год а на подстанциях без дежурного персонала следует производить внешний осмотр устройств (технический осмотр), который включает в себя:
- выполнение требований ПУЭ и других руководящих документов, относящихся к микропроцессорным реле, а также соответствие устройства проекту и реальным условиям работы;
- проверку отсутствия механических повреждений МР и повреждений изоляции его выводов;
 - удаление пыли с поверхности и внутри устройств;
- проверку отсутствия потёков воды (в том числе высохших), налёта окислов на металлических поверхностях;
- осмотр всех механических и электрических соединений и затяжек крепёжных соединений;
 - проверку качества лакокрасочных покрытий и маркировки МР;
- проверку всех проводов и кабелей на предмет истирания, излома, износа и других повреждений, проверку качества паяных соединений;
 - осмотр состояния и правильности выполнения заземления МР.

Примечание – Внутренний осмотр устройств выполняется после истечения гарантийного срока эксплуатации.

- 10.3 Проверка при новом включении (наладка) производится при вводе в работу МР или при реконструкции устройств релейной защиты и автоматики (P3A) на действующем объекте и включает в себя следующие виды работ:
- а) Тренировка, производится при подаче на MP (в течение 3 4 сут) напряжения оперативного тока, а также рабочих входных токов и напряжений. MP должно быть включено с действием на сигнализацию;
 - б) Внешний осмотр в соответствии с п. 10.2;
- в) Измерение электрического сопротивления изоляции и испытание электрической прочности изоляции (в соответствии с разделом 2);
- г) Проверка и настройка конфигурации устройства в соответствии с проектом (осуществляется с клавиатуры или по линии связи);
- д) Проверка значений токов и напряжений, поданных от постороннего источника, являющегося контрольным средством измерений;
- е) Проверка срабатывания по каждому дискретному входу при напряжении питания оперативного тока, равном 0,7 U_{HOM};
 - ж) Проверка диапазонов регулирования уставок;
 - и) Проверка срабатывания защит, при этом:
- 1) Ток и напряжение, соответствующие аварийному режиму следует подавать на все ступени и фазы;
 - 2) Для защит максимального действия:
- подавать ток (напряжение), соответствующие значениям 0,9 и 1,1 уставки срабатывания (для проверки несрабатывания защиты в первом и срабатывания во втором случаях):
- для контроля уставок по времени срабатывания подавать ток или напряжение, равные 1,3 значения уставки срабатывания;

- для защит с зависимой характеристикой необходимо проверять 4 или 5 точек характеристик;
- при проверке токовых направленных защит следует подавать номинальное напряжение с фазой, обеспечивающей срабатывание реле направленной мощности;
 - 3) Для защит минимального действия:
- подавать ток (напряжение), соответствующие значениям 1,1 и 0,9 уставки срабатывания (для проверки несрабатывания защиты в первом и срабатывания во втором случаях);
- для контроля уставок по времени срабатывания подавать ток или напряжение, равные 0,8 значения уставки срабатывания;
 - 4) Контролировать состояние светодиодов при срабатывании;
- к) Проверка отсутствия ложных действий МР при подаче и снятии напряжения оперативного тока;
 - л) Проверка правильности действия сигнализации;
- м) Проверка действия MP на коммутационную аппаратуру (по месту установки MP и дистанционно);
- н) Проверка правильности действий устройства при имитации всех возможных видов КЗ в зоне и вне зоны его действия;
 - п) Проверка функций автоматики, АПВ, УРОВЗ, АВР;
- р) Проверка взаимодействия контролируемого устройства с другими включёнными в работу внешними защитами;
 - с) Проверка функции регистрации входных параметров МР;
 - т) Проверка функции самодиагностики при подключении питания;
 - у) Проверка устройства рабочим током и напряжением:
- 1) Проверка исправности и правильности подключения цепей напряжения путём измерения линейных и фазных напряжений и напряжения нулевой последовательности;
- 2) Проверка исправности токовых цепей путём измерения вторичных входных токов в фазах и по нулевому (четвёртому) каналу тока;
 - 3) Проверка тока и напряжения прямой, обратной и нулевой последовательности.
- 10.4 Тестовый контроль (опробование) устройств рекомендуется проводить еженедельно на подстанциях с дежурным персоналом, а на подстанциях без дежурного персонала не реже одного раза в 12 мес. Во время тестового контроля проводится проверка работоспособности устройства путём его опробования действием защиты на коммутационную аппаратуру. Правильное действие МР в течение 6 мес до срока опробования приравнивается к опробованию. Необходимость и периодичность проведения тестового контроля определяются местными условиями и утверждаются главным инженером предприятия, эксплуатирующего МР.
- 10.5 Первый профилактический контроль MP проводится через 12 15 мес после включения устройства в работу в целях выявления и устранения приработочных отказов, возникающих в начальный период эксплуатации. При первом профилактическом контроле проводятся проверки в соответствии с п. 10.3 (б, в, г, д, ж, и, л, м, р, т, у).
- 10.6 Профилактическое восстановление производится не реже одного раза в 3 года с целью проверки исправности устройства и его цепей подключения, соответствия уставок и характеристик MP заданным и проверки MP в целом. При профилактическом восстановлении проводятся проверки в соответствии с п. 10.3 (б, в, г, д, ж, и, л, м, п, р, с, т, у). Испытание изоляции проводится напряжением 1000 В переменного тока в течение 5 с или мегаомметром постоянного тока с выходным напряжением 2500 В.
- 10.7 Внеочередная проверка проводится при частичных изменениях схем или реконструкции устройств релейной защиты и автоматики (P3A), при необходимости изменения уставок или характеристик MP, а также для устранения недостатков, обнаруженных при проведении опробования.

- 10.8 Послеаварийная проверка выполняется для выяснения причин отказов функционирования или неясных действий устройств РЗА.
- 10.9 Внеочередная и послеаварийная проверки проводятся по программам, составленным службой РЗА, утверждённым главным инженером предприятия, эксплуатирующего МР.

11 РЕКОМЕНДАЦИИ ПО РАСЧЁТУ УСТАВОК И ПО ОРГАНИЗАЦИИ АВТОМАТИКИ РЕЛЕ МИКРОПРОЦЕССОРНЫХ СЕРИИ 700

11.1 Рекомендации по расчету уставок максимальной токовой защиты линий

11.1.1 Расчёт токов срабатывания ненаправленной максимальной токовой защиты (МТЗ)

Расчет уставок ступенчатых токовых защит рекомендуется начинать с наиболее чувствительной ступени, т.е. МТЗ.

Ток срабатывания МТЗ выбирается по трем условиям:

- несрабатывания защиты 2Р3 при сверхтоках послеаварийных перегрузок, т.е. после отключения короткого замыкания на предыдущем элементе (рисунок 11.1);

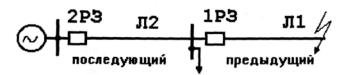


Рисунок 11.1 – Расчётная схема для выбора уставок релейной защиты (Р3)

- согласования чувствительности защит последующего и предыдущего элементов (Л2 и Л1 на рисунке 11.1);
- обеспечения достаточной чувствительности при КЗ в конце защищаемого элемента (основная зона) и в конце каждого из предыдущих элементов (зоны дальнего резервирования).

По первому из этих условий ток срабатывания МТЗ на Л2 выбирается по выражению:

$$I_{C.3} = \frac{k_H \cdot k_{C3\Pi}}{k_B} I_{pa\delta.marc}, \tag{1}$$

где k_H - коэффициент надежности несрабатывания защиты (рекомендуется принимать k_H =1,1);

 k_B - коэффициент возврата максимальных реле тока (k_B =0,95);

k_{СЗП} - коэффициент самозапуска нагрузки, отражающий увеличение рабочего тока I_{раб.макс} за счет одновременного пуска всех тех электродвигателей, которые затормозились при снижении напряжения во время короткого замыкания. При отсутствии в составе нагрузки электродвигателей напряжением 6 кВ и 10 кВ и при времени срабатывания МТЗ более 0,3 с можно принимать значения k_{СЗП} ≥1,1÷1,3.

Максимальные значения коэффициента самозапуска при значительной доле электродвигательной нагрузки определяются расчетом для конкретных условий, но обязательно при наиболее тяжелом условии пуска полностью заторможенных электродвигателей

По условию согласования чувствительности защит последующего (защищаемого) и предыдущих элементов ток срабатывания последующей защиты I_{с.з.посл.} выбирается по выражению:

$$I_{c.3.nocn.} \ge \frac{k_{H.C.}}{k_P} \left(\sum_{1}^{n} I_{c.3.npe\partial.Makc(n)} + \sum_{1}^{N-n} I_{pa\delta.Makc(N-n)} \right), \tag{2}$$

где k_{H.C} – коэффициент надежности согласования, значения которого зависят от типа токовых реле и принимаются в пределах от 1,1 при согласовании защит с микропроцессор-

ными реле, реле типа PT-40, PCT и т.п. до 1.3÷1.4 при согласовании защит с реле прямого действия типа РТВ:

к - коэффициент токораспределения, который учитывается только при наличии нескольких источников питания, а при одном источнике питания равен 1;

 $\sum I_{c.з.npe\partial.макc(n)}$ – наибольшая геометрических ИЗ CVMM токов срабатывания максимальных токовых защит параллельно работающих предыдущих элементов n (см. рисунок 2); при разнице между углами фазового сдвига напряжения и тока для всех предыдущих элементов n не более 50 градусов допустимо арифметическое сложение вместо геометрического;

$$\sum_{1}^{N-n} I_{paar{o}.Makc(N-n)}$$
 — геометрическая сумма максимальных значений рабочих токов всех

предыдущих элементов (N), за исключением тех, с защитами которых производится согласование (n); при примерно однородной нагрузке допустимо арифметическое сложение вместо геометрического, что создает некоторый расчетный запас.

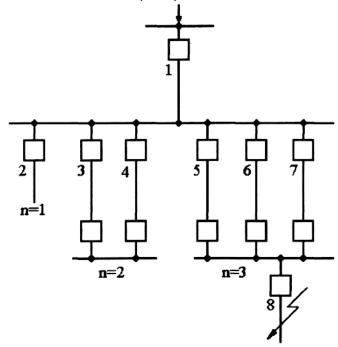


Рисунок 11.2 – Схема электрической сети с параллельно работающими предыдущими элементами 3, 4 и 5-7, поясняющая условие (2) согласования чувствительности максимальных токовых защит последующих и предыдущих элементов.

Например, для каждой из предыдущих линий 2-7 (рисунок 11.2) значения рабочего тока Іраб.макс=100 А; ток срабатывания у защит линий 2-7 также одинаков: $I_{C.3.}$ = 300 A.

$$300~{\rm A.}$$
 Тогда $\sum_{1}^{n}I_{c.s.nped.(n)}$ максимально для линий 5-7:
$$\sum_{1}^{n}I_{c.s.nped.макc(n)}=\sum_{1}^{3}I_{c.s.nped.макc(3)}=3\cdot300=900{\rm A,}$$

соответственно $\sum_{1}^{N-n} I_{paar{o}.makc(N-n)}$ рассчитывается для линий 2-4: $\sum_{1}^{N-n} I_{paar{o}.makc(N-n)} = \sum_{1}^{6-3} I_{paar{o}.makc(6-3)} = 3 \cdot 100 = 300 \, \text{A}.$

$$\sum_{1}^{N-n} I_{pa6.makc(N-n)} = \sum_{1}^{6-3} I_{pa6.makc(6-3)} = 3 \cdot 100 = 300 \,\text{A}$$

Ток срабатывания максимальной токовой защиты последующей линии 1 по условию (2) при kн.с = 1,1 должен быть

$$I_{C.3} \ge 1,1 \cdot (900 + 300) \ge 1320 \text{ A}.$$

Из полученных по выражениям (1) и (2) значений токов срабатывания защиты выбирается наибольшее, а затем определяется ток срабатывания реле Іс.р. (уставка по току):

$$I_{CP} = I_{C3} \cdot \kappa_{CX} \tag{3}$$

где Іс.з – ток срабатывания защиты, А (первичный);

 $k_{\rm CX}$ — коэффициент схемы, показывающий во сколько раз ток в реле больше, чем ток во вторичной обмотке трансформатора тока при нормальном симметричном режиме работы защищаемого элемента, при схемах включения измерительных реле на фазные токи (полная и неполная «звезда»), значение этого коэффициента равно 1, а для схем, где измерительные реле включены на разность фазных токов (например «треугольник») равно 1,73.

Уставки защит от повышения тока І_{уст} вводятся в устройство в относительных единицах по отношению к номинальному первичному току трансформатора тока І_{ном}:

$$I_{ycm} = \frac{I_{C.P}}{I_{HOM}} \tag{4}$$

Оценка эффективности защиты производится с помощью коэффициента чувствительности $k_{\text{чув}}$:

$$\kappa_{uye} = \frac{I_{p.mun}}{I_{c.p}},\tag{5}$$

где I_{р.мин} – минимальное значение тока в реле при наименее благоприятных условиях, А.

При определении значения этого тока необходимо учитывать вид и место КЗ, схему включения измерительных органов защиты, а также реально возможные минимальные режимы работы питающей энергосистемы, при которых токи КЗ имеют наименьшее значения.

Минимальные значения коэффициента чувствительности защит должны быть не менее чем требуется ПУЭ. Например, для максимальной токовой защиты они должны быть не менее 1,5 при КЗ в основной зоне защиты и около 1,2 при КЗ в зонах дальнего резервирования, т.е. на предыдущих (нижестоящих) элементах.

11.1.2 Расчёт токов срабатывания направленной МТЗ

Ток срабатывания направленной МТЗ выбирается практически точно также как и для ненаправленной, но в формуле (1) при определении максимального рабочего тока $I_{\mathit{pa6.макc}}$ можно учитывать только максимальный режим, соответствующий направлению мощности от шин в линию.

11.1.3 Выбор времени срабатывания и времятоковой характеристики MT3

Уставка по времени защиты последующей линии Л2 (рисунок 11.1) выбирается большей, чем у защит предыдущих элементов, например, линии Л1:

$$t_{c.3.\Pi OCJ} = t_{c.3.\Pi PEJ.} + \Delta t$$
, (6)

где Δt – ступень селективности или ступень времени.

Значение Δt определяется по формуле:

$$\Delta t = t_{\text{0.M.}} + t_{\text{p.посл.}} + t_{\text{p.пред.}} + t_{\text{зап}} , \qquad (7)$$

где t_{о.м.} – полное время отключения K3 выключателем от подачи оперативного тока на электромагнит отключения до окончания гашения дуги с учётом разброса по времени ±10 %;

 $t_{\text{р.посл.}}$ и $t_{\text{р.пред.}}$ – времена разброса защит, последующей и предыдущей (время разброса для устройств 700-й серии t_p =50 мс);

t₃ап – время запаса.

Недостатком максимальных токовых защит является «накопление» выдержек времени, особенно существенное для головных элементов в многоступенчатых электрических сетях. Применение более точных цифровых реле позволяет снизить ступени селективности. Для защит на устройствах 700-й серии можно принимать ступени селективности Δt =0,15÷0,2 с (при условии, что на всех смежных линиях используются подобные реле с независимыми времятоковыми характеристиками и однотипные выключатели).

При согласовании микропроцессорной защиты с защитами, использующими реле PB и ЭВ-110 и 120 (пределы измерений 1,3 и 3,5 с) или с защитами, имеющими полупроводниковые органы выдержки времени, принимается значение $\Delta t = (0,3\div0,4)$ с.

При согласовании времятоковых характеристик устройств MP 700-й серии с характеристиками предохранителей рекомендуется принимать ступень селективности 0,4 с. Для защит с электромеханическими реле, имеющими зависимую характеристику времени срабатывания, Δt =0,5 с (PT-80, PT-90) и

 Δt =0,7 c (PTB).

В ряде случаев существенное снижение времени отключения КЗ достигается путем использования токовых защит с обратнозависимыми от тока времятоковыми характеристиками. При одном и том же значении тока КЗ, проходящего через две смежные защиты с разными токами срабатывания, эти защиты имеют различное время срабатывания по причине разной кратности тока в их измерительных органах. Использование обратнозависимых времятоковых характеристик реле позволяет лучше согласовать время действия последующей релейной защиты с предыдущим защитным устройством с зависимой времятоковой характеристикой.

Графики зависимой времятоковой характеристика приведены на рисунке 11.3а.

При выборе защиты с зависимой от тока выдержкой времени, время срабатывания t_{cp} , мс, определяется формулой:

$$t_{cp} = \frac{10k}{\frac{I_{ex}}{I_{cp}} - 0.6}$$
 (7a)

где k – коэффициент, характеризующий вид зависимой характеристики (принимает значения от 0 до 4000);

I_{вх} - входной фазный ток устройства;

Іср – величина тока уставки зависимой от тока ступени МТЗ.

Зависимая времятоковая характеристика

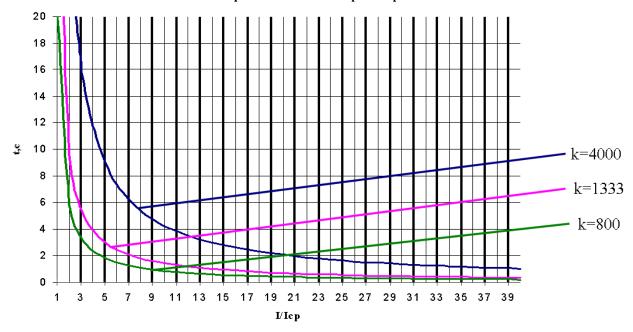


Рисунок 11.3а – Графики зависимой характеристики

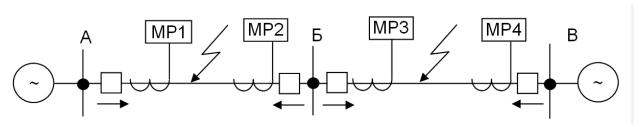


Рисунок 11.3б – К выбору уставок по времени направленных МТЗ.

При расчёте времени срабатывания направленной МТЗ руководствуются встречно-ступенчатым принципом. Все защиты разбиваются на две группы (MP3, MP1 и MP2, MP4, см. рисунок 11.3б), не связанные между собой выдержками времени. В пределах каждой группы выдержки времени выбираются как у ненаправленной МТЗ по ступенчатому принципу: $t_4 = t_2 + \Delta t$ и $t_1 = t_3 + \Delta t$.

Важно! Для правильного определения направления необходимо задавать уставку по времени направленной МТЗ не менее 10 мс.

11.1.4 Расчёт угла максимальной чувствительности

В микропроцессорных реле серии MP7XX определение направления мощности производится по 90°-градусной схеме, т.е. для построения измерительного органа ступени используются следующие сочетания токов и напряжений: **Ia** и **Ubc**, **Ib** и **Uca**, **Ic** и **Uab**, при этом напряжение поляризации поворачивается на 90° против часовой стрелки. Зона срабатывания ступени задаётся с помощью угла максимальной чувствительности (МЧ), откладываемого в направлении против часовой стрелки от напряжения поляризации (на рисунке 11.4 это напряжение **Ubc**, в симметричном режиме оно совпадает по направлению с **Ua**).

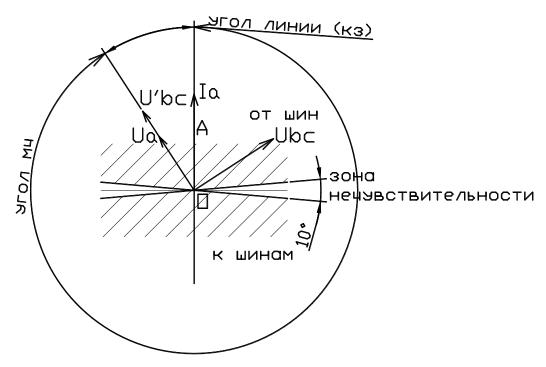


Рисунок 11.4 – К определению угла максимальной чувствительности.

Уставка угла максимальной чувствительности должна быть такой, чтобы ток короткого замыкания на линии лежал на линии максимальной чувствительности ОА, т.е для активно-индуктивной цепи:

$$\varphi_{MY} = 360 - \varphi_{\pi}$$

где
$$arphi_{\it I\!I}=arctgrac{X_{\it I\!I}}{R_{\, {\scriptscriptstyle I\!I}}}$$
 — угол линии.

11.1.5 MT3 с пуском по напряжению

Принцип действия МТЗ с пуском по напряжению основывается на том, что в режиме КЗ происходит снижение напряжения. Поэтому, используя пусковой орган по напряжению, можно отличать режимы перегрузки и самозапуска от режима КЗ.

Используя функцию блокировки ступени от сигнала на дискретном входе в устройствах МР можно реализовать МТЗ с пуском по напряжению. Токовая уставка такой защиты выбирается исходя из условия отстройки от максимального тока нормального режима без учёта перегрузки и самозапуска двигателей:

$$I_{ycm} = \frac{k_H \cdot \kappa_{CX}}{k_B \cdot n_T} \frac{I_{pa\delta.makc}}{I_{HOM}} \,. \tag{8}$$

На дискретный вход подаётся сигнал пуска от реле минимального напряжения. Защита не должна действовать при минимальном уровне рабочего напряжения и подействовав при внешнем КЗ реле должно разомкнуть свои контакты после отключения повреждённого участка:

$$U_{ycm} = \frac{U_{nuh.pa6.muh}}{k_H \cdot k_B \cdot n_H}, \tag{9}$$

где $U_{\text{лин.раб.мин}}$ – минимальное линейное рабочее напряжение;

kн - коэффициент надежности (kн принимается равным 1,1÷1,2);

k_B - коэффициент возврата реле (для устройств MP 700-й серии k_B=1,02).

Примечание. При использовании ступени защиты с пуском по напряжению следует учитывать то, что при снижении напряжения пуска ниже 5 В ступень защиты блом МР741 редакция 6.04 www.bemn.bv

кируется, т.е. вблизи места установки защита имеет «мёртвую» зону. Эту зону рекомендуется защищать токовой отсечкой без пуска по напряжению.

11.1.6 Ускорение максимальной защиты при включении выключателя

В устройствах МР 700-й серии предусматривается ускорение максимальной защиты при включении выключателя.

Согласно ПУЭ защиту целесообразно ускорять, если выдержка времени максимальной защиты превышает 1 с. Каких-либо дополнительных расчетов для обоснования возможности ввода ускорения не требуется. Выдержка 0,5 с обеспечивает отстройку ускоряемой ступени от всех переходных процессов. Достаточным временем использования данной функции для определения включения на короткое замыкание можно считать 1 с.

11.2 Рекомендации по расчету уставок токовых отсечек

11.2.1 Расчет тока срабатывания селективной токовой отсечки без выдержки времени

Селективность токовой отсечки мгновенного действия обеспечивается выбором её тока срабатывания I_{с.о} большим, чем максимальное значение тока КЗ I_{к.макс} при повреждении в конце защищаемой линии электропередачи (точки КЗ и К5 на рисунке 11.5) или на стороне НН защищаемого понижающего трансформатора:

$$I_{c.o} \ge k_H \cdot I_{\kappa.MAKC} \tag{10}$$

Коэффициент надёжности k_H для токовых отсечек без выдержки времени, установленных на линиях электропередачи и понижающих трансформаторах, при использовании устройств MP 700-й серии, может приниматься в пределах от 1,1 до 1,15.

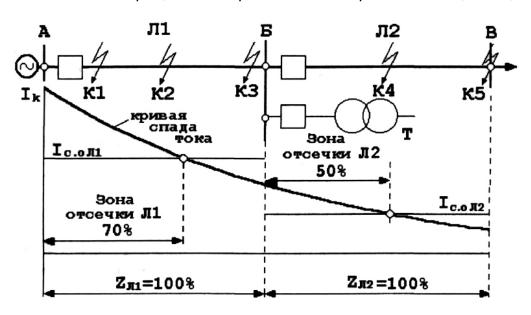


Рисунок 11.5 – Пример графического определения зон действия отсечек на линиях электропередачи.

При определении максимального значения тока КЗ при повреждении в конце линии электропередачи напряжением 35 кВ и ниже рассматривается трёхфазное КЗ при работе питающей энергосистемы в максимальном режиме, при котором электрическое со-

противление энергосистемы является минимальным. Определение максимального тока трёхфазного КЗ за трансформатором с регулированием напряжения необходимо производить при таком положении регулятора напряжения, которое соответствует наименьшему сопротивлению трансформатора.



Рисунок 11.6 – Характерные точки КЗ для расчетов токовых отсечек на понижающих трансформаторах и блоках линия-трансформатор

Кроме отстройки токовой отсечки от максимального значения тока КЗ по условию (10), необходимо обеспечить её несрабатывание при бросках тока намагничивания (БТН) силовых трансформаторов. Эти броски тока возникают в момент включения под напряжение ненагруженного трансформатора и могут в первые несколько периодов превышать номинальный ток трансформатора в 5-7 раз. Однако выбор тока срабатывания отсечки трансформатора по условию (10) как правило, обеспечивает и отстройку от бросков тока намагничивания.

При расчете токовой отсечки линии электропередачи, по которой питается несколько трансформаторов, необходимо в соответствии с условием (10) обеспечить несрабатывание отсечки при КЗ за каждым из трансформаторов на ответвлениях от линии (если они имеются) и дополнительно проверить надёжность несрабатывания отсечки при суммарном значении бросков тока намагничивания всех трансформаторов, подключённых как к защищаемой линии, так и к предыдущим линиям, если они одновременно включаются под напряжение. Условие отстройки отсечки от бросков тока намагничивания трансформаторов имеет вид:

$$I_{c.o} \ge k_H \sum I_{HOM.mp},\tag{11}$$

где $\sum I_{{\scriptscriptstyle HOM.mp}}$ — сумма номинальных токов всех трансформаторов, которые могут одновременно включаться под напряжение по защищаемой линии;

kн - коэффициент надёжности, значение которого зависит от времени срабатывания токовой отсечки (k_H=5).

В устройствах МР 700-й серии несрабатывание меновенной ступени при БТН трансформаторов может обеспечиваться:

- либо введением небольшой задержки (0,1 c), тогда k_H в выражении (11) может приниматься равным $3\div 4$,
- либо путём использования специального переключателя, с помощью которого можно обеспечить при включении линии автоматическое удвоение уставки отсечки по току; при этом в выражении (11) следует учитывать лишь половину суммы номинальных токов всех трансформаторов.

При необходимости можно использовать оба мероприятия, т.е. небольшое замедление и автоматическое удвоение уставки по току.

На линиях 10 и 6 кВ с трансформаторами на ответвлениях, которые защищаются плавкими предохранителями (например, типа ПКТ-10), в условии (10) значение $I_{\text{к.макс}}$ должно соответствовать току трёхфазного КЗ за наиболее мощным из трансформаторов. Далее следует определить время плавления вставок предохранителей этого трансформатора при расчетном токе КЗ, равном току срабатывания отсечки, выбранному из условий (10) и (11). Для учёта допускаемого стандартом разброса времятоковых характеристик плавких предохранителей ПКТ следует значение этого тока уменьшить на 20%: $I_{\text{pac}} = I_{\text{c.o}}/1,2$.

Если время плавления t_{пл} ≤ 0,1 с, то отсечка с таким током срабатывания может быть использована, но при условии, что защищаемая линия имеет устройство автоматического повторного включения (АПВ). Если t_{пл} ≥ 0,1 с, то следует либо увеличить ток срабатывания отсечки до такого значения, при котором обеспечивается расплавление вставок предохранителей до момента отключения защищаемой линии (т.е. не более 0,1 с), либо увеличить время срабатывания отсечки.

Уставки защит от повышения тока вводятся в устройство в виде значений, рассчитанных по формулам (3) и (4).

Чувствительность токовых отсечек оценивается коэффициентом чувствительности, требуемые значения которых указаны в ПУЭ, а также протяжённостью защищаемой части линии электропередачи. Коэффициент чувствительности определяется по выражению (5).

Для токовых отсечек, устанавливаемых на понижающих трансформаторах и выполняющих функции основной быстродействующей токовой защиты (при отсутствии дифференциальной защиты), чувствительность определяется по току наиболее неблагоприятного вида повреждения — как правило, двухфазного КЗ на выводах ВН трансформатора (точка К2 на рисунке 11.6) в минимальном, но реально возможном режиме работы энергосистемы. Значение коэффициента чувствительности должно быть около 2,0. Такие же требования существуют для токовых отсечек на блоках линия-трансформатор.

Для токовых отсечек без выдержки времени, устанавливаемых на линиях электропередачи и выполняющих функции дополнительных защит (рисунок 11.5), коэффициент чувствительности должен быть около 1,2 при КЗ в месте установки отсечки в наиболее благоприятном по условию чувствительности режиме.

Для оценки эффективности токовой отсечки, установленной на линии электропередачи, полезно определить зону действия отсечки в процентах от всей длины линии. Протяжённость зоны действия отсечки зависит от характера изменения расчетных значений тока при перемещении точки КЗ вдоль защищаемой линии. По нескольким значениям тока КЗ строится кривая спада тока (рисунок 11.5). Могут быть построены две кривые: для трёхфазных КЗ в максимальном режиме работы энергосистемы и для двухфазных КЗ в минимальном режиме. Следует учитывать, что погрешность трансформатора тока не должна превышать 10%, с увеличением погрешности трансформаторов тока зона действия отсечки уменьшается.

11.2.2 Отсечка с выдержкой времени на линиях электропередачи

Небольшая выдержка времени позволяет задержать срабатывание отсечки последующей линии (Л1 на рисунке 11.5) при К3 на предыдущей линии Л2 для того, чтобы успела сработать мгновенная отсечка повреждённой линии Л2. Для отсечки с небольшой выдержкой времени можно выбрать значительно меньшее значение тока срабатывания по сравнению с током срабатывания мгновенной отсечки по нескольким причинам.

Выдержка времени отсечки рассчитывается следующим образом:

$$t_{C3(TOB)} = t_{C3(TO)} + \Delta t , \qquad (12)$$

где $t_{C3(TO)}$ - время срабатывания отсечки без выдержки времени;

 Δt - ступень селективности.

Ток срабатывания по выражению (10) выбирается из условия отстройки от токов при КЗ в более удалённых точках, например при КЗ в конце зоны действия мгновенной отсечки предыдущей линии Л2 (рисунок 5), при КЗ за трансформатором приёмной подстанции или трансформатором на ответвлении защищаемой линии, имея в виду, что трансформаторы оборудованы быстродействующими защитами. Можно выбирать ток срабатывания отсечки с выдержкой времени на последующей линии по выражению (2), т.е. по условию согласования чувствительности с мгновенной отсечкой на предыдущей линии. Пример карты селективности приведён на рисунке 11.7.

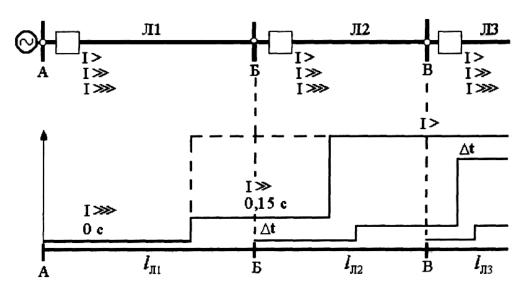


Рисунок 11.7 – Расчетная схема и карта селективности ступенчатых токовых защит линии

Как видно из рисунка 11.7, именно средняя ступень трёхступенчатой токовой защиты (I>>) может значительно ускорить отключение КЗ на линии.

В дополнение к этому нужно отметить, что для отсечек с замедлением не требуется выполнения условия (11) отстройки отсечки от бросков тока намагничивания трансформаторов, поскольку эти токи быстро затухают. На линиях с трансформаторами на ответвлениях при выполнении защиты трансформаторов с помощью плавких предохранителей (например, типа ПКТ-10 или ПСН-35) и при КЗ в трансформаторе селективность между плавкими предохранителями и токовой отсечкой питающей линии можно обеспечить благодаря замедлению действия отсечки.

11.3 Пример расчета уставок для направленной МТЗ с зависимой времятоковой характеристикой

Требуется рассчитать уставки для направленной защиты, установленной на подстанции В (рисунок 11.7), имеющей двухстороннее питание. Максимальный рабочий ток подстанции $I_{\it pa6.Makc} = 100$ А. Связь между источниками питания и подстанцией осуществляется воздушными линиями электропередач, исполненными проводами марки АС-70/11 со следующими параметрами:

-удельное активное сопротивление провода $r_{\pi} = 0,468$ Ом/км;

-удельное индуктивное сопротивление провода $x_{\pi} = 0.378$ Ом/км.

Рассчитывается ток срабатывания для направленной МТ3:

$$I_{C.3} = \frac{k_H \cdot k_{C3\Pi}}{k_R} I_{pa6.Makc} = \frac{1,1 \cdot 1,2}{0,95} \cdot 100 = 139 A$$

Выбирается время срабатывания защиты для МТЗ с зависимой времятоковой характеристикой:

$$t_{CP} = \frac{10 \cdot k}{\frac{I_{BX}}{I_{CP}} - 0.6},$$

где k – коэффициент, характеризующий вид зависимой характеристики (принимает значения от 0 до 4000);

 $I_{\it BX}$ – входной фазный ток устройства;

 $I_{\it CP}$ – величина тока уставки зависимой от тока ступени МТ3.

$$I_{CP} = \frac{k_{cx} \cdot I_{C.3}}{n_T},$$

где k_{cx} – коэффициент схемы;

 n_T – коэффициент трансформации трансформатора тока.

За расчетный ток через защиту принимается максимальное значение тока при КЗ <u>в начале</u> предыдущей линии АБ (230 A). Таким образом:

$$I_{pacy} = 230 \text{ A}$$

Время срабатывания защиты АБ при КЗ в начале защищаемой линии (I_{к.макс}=230A) определяется по типовой характеристике реле РТ-80 равным t_{с.з.1}=0,65 с.

Принимая Δt =0,5 с, получаем, что для устройства MP4 $t_{c.3.2}$ =0,65 + 0,5= 1,15 с при I_{Dac4} = 230 A.

В соответствии с (7а) рассчитывается коэффициент k для характеристики защиты БВ:

$$k = \frac{t_{c.32} \cdot (\frac{I_{pacq}}{I_{c.32}} - 0.6)}{10} = \frac{1.15 \cdot 10^3 \cdot (\frac{230}{139} - 0.6)}{10} = 121$$

и стоится времятоковая характеристика устройства МР (см. рисунок 11.7а).

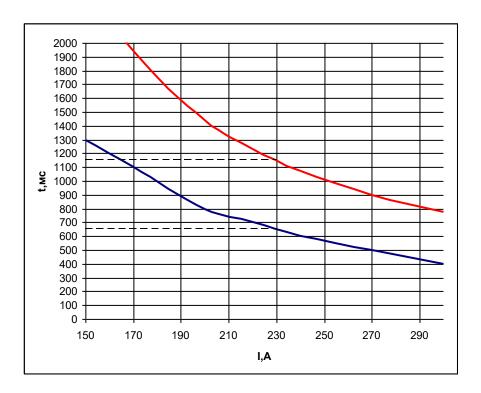
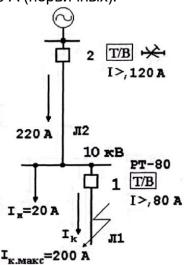


Рисунок 11.7а - Пример согласования характеристик устройств MP 700-й серии и дискового индукционного реле PT-80 для направленной MT3


Определяется угол максимальной чувствительности:

$$\varphi_{MY} = 360 - \varphi_{JI},$$

где
$$\varphi_{_{\!\!M}}=arctg\,rac{X_{_{\!\!M}}}{\mathrm{R}_{_{\!\!M}}}=arctg\,rac{l\cdot x_{_{\!\!M}}}{l\cdot r_{_{\!\!M}}}\,arctg\,rac{0,378}{0,468}=39\,^\circ$$
 - угол линии.
$$\varphi_{_{\!\!M\!\!M}}=360-\varphi_{_{\!\!M}}=360-39=321\,^\circ$$

11.4 Примеры расчета рабочих уставок ступенчатых токовых защит линий от междуфазных КЗ

Случай 1. На предыдущей (нижестоящей) линии Л1 установлена защита с индукционным реле РТ-80 с обратнозависимой времятоковой характеристикой (рисунок 11.8) с известными уставками, а на последующей (вышестоящей) линии 2 надо выбрать обратнозависимую характеристику МТЗ. Предположим, что ток срабатывания защиты 2 уже выбран по условиям (1), (2) и (5) и равен, например, 120 А (первичных).

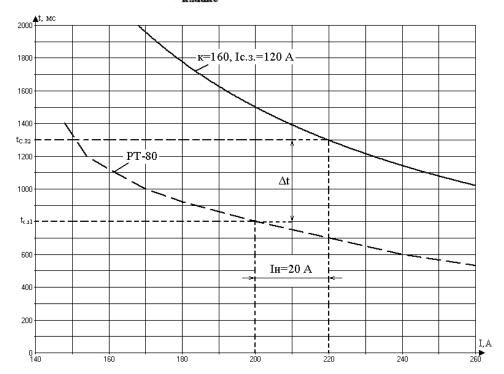


Рисунок 11.8 – Пример согласования характеристик устройств MP 700-й серии и дискового индукционного реле PT-80

За расчетный ток через защиту 2 принимается сумма токов: максимальное значение тока при КЗ <u>в начале</u> предыдущей линии 1 (200 A) плюс ток нагрузки неповрежденных предыдущих линий (20 A). Таким образом:

$$I_{pac4} = 200 + 20 = 220 \text{ A}$$

Время срабатывания защиты 1 при КЗ в начале защищаемой линии ($I_{\text{к.макс}}$ = 200A) определяется по типовой характеристике реле PT-80 равным $t_{\text{с.з.1}}$ =0,8 с (рисунок 8). Принимая Δt = 0,5 с, получаем, что для устройства MP

 $t_{c.3.2} = 0.8 + 0.5 = 1.3$ с при $I_{pacy} = 220$ A.

Выбирается коэффициент k для характеристики защиты 2 в соответствии с формулой (7а):

$$k = \frac{t_{c.32} \cdot (\frac{I_{pacu}}{I_{c.32}} - 0.6)}{10} = \frac{1.3 \cdot 10^3 \cdot (\frac{220}{120} - 0.6)}{10} = 160$$

По зависимости (7а) строим времятоковую характеристику МР.

<u>Случай 2</u> отличается от предыдущего случая 1 тем, что в реле РТ-80 защиты 1 введена в действие "отсечка" - электромагнитный элемент мгновенного действия (I>>) с током срабатывания, в 2 раза большим, чем ток срабатывания индукционного элемента (I_{c.o}=160 A)

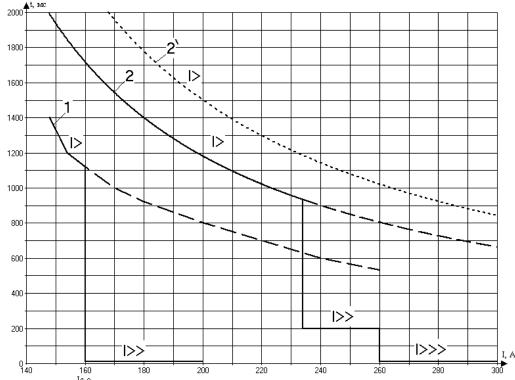


Рисунок 11.9 – Пример согласования характеристик MP и реле PT-80 с использованием "отсечки".

Характеристика защиты 1 показана на рисунке 11.9. Определяем время срабатывания МТЗ защиты 2 по условию:

$$t_{c.3.2} = t_{c.3.1} + \Delta t = 0.9 + 0.5 = 1.4 c$$

где t_{с.31} - время срабатывания защиты 1 при токе K3, равном току срабатывания отсечки в реле PT-80, т.е. 160 A (рисунок 11.9).

Коэффициент к определяется по формуле (7а):

$$k = \frac{t_{c.32} \cdot (\frac{I_{pacu}}{I_{c.32}} - 0.6)}{10} = \frac{1.4 \cdot 10^3 \cdot (\frac{160 + 20}{120} - 0.6)}{10} = 126$$

Для сравнения показана характеристика защиты 2 из предыдущего случая 1, которая идет несколько выше (штрихпунктирная кривая 2'). Снижение времени срабатывания последующей защиты 2 достигнуто в данном случае благодаря наличию отсечки с t_{с-0} = 0 с у предыдущей защиты 1. Но ещё более значительное снижение времени срабатывания защиты 2 достигается построением двух или трехступенчатой токовой защиты.

Выбираем ток срабатывания для отсечки I>> защиты 2 по условию (2) согласования с отсечкой защиты 1:

$$I_{c,o2} = \kappa_{\mu,c} \cdot (I_{c,o} + I_{\mu}) = 1,3 \cdot (160 + 20) = 234 \text{ A}$$

При выбранном токе срабатывания отсечка 2 оказывается недостаточно надёжно отстроенной от КЗ в начале предыдущей линии Л1:

$$k_{H} = \frac{I_{c.o2}}{I_{K}} = \frac{234}{200} = 1,17$$

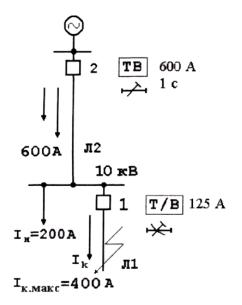
Обычно считается достаточным k_H>1,2. Поэтому следует ввести небольшое замедление действия этой отсечки, выбрав по выражению (8):

$$t_{c.o2} = t_{c.o} + \Delta t = 0 + (0.2 \div 0.3) = (0.2 \div 0.3) c$$

В устройстве МР имеется ещё одна отсечка I>>>, для которой следует выбрать ток срабатывания по условию отстройки от максимального тока КЗ на Л1:

$$I_{c.o.3} \ge \kappa_H \cdot I_{\kappa.makc} = 1,3 \cdot 200 = 260 \text{ A}$$

Характеристики защит показаны на рисунке 11.9.


<u>Случай 3:</u> на питающем элементе 2 (рисунок 11.10) установлена максимальная токовая защита с независимой характеристикой с заданными уставками: 600 A (первичных), 1 с.

Необходимо выбрать обратнозависимую характеристику МТЗ устройства МР на предыдущей (нижестоящей) линии Л1, которая обеспечивала бы необходимую селективность с защитой питающего (вышестоящего) элемента 2.

Ступень селективности ∆t между характеристиками защит 2 и 1 должна обеспечиваться при токе K3, равном току срабатывания вышестоящей защиты 2 минус ток нагрузки неповрежденных элементов (рис. 10): I_K = 600 - 200 = 400 A.

Время срабатывания защиты 1 при этом токе КЗ выбирается по условию селективности:

$$t_{c,2,1} = t_{c,2,2} - \Delta t = 1 - 0.3 = 0.7$$
 C

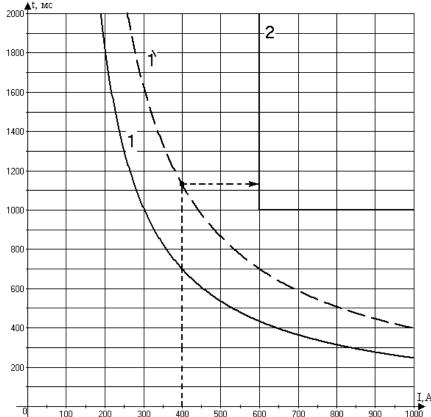


Рисунок 11.10 — Пример согласования обратнозависимой характеристики устройства MP и независимой характеристики MT3 последующего элемента

Предположим, что ток срабатывания защиты 1 не более 125 А. Для нее определяется по формуле (7а) коэффициент k:

$$k = \frac{t_{c.32} \cdot (\frac{I_{pac4}}{I_{c.32}} - 0.6)}{10} = \frac{0.7 \cdot 10^3 \cdot (\frac{400}{125} - 0.6)}{10} = 182$$

Кривая 1 построена на рисунке 11.10.

Учет влияния нагрузки очень важен для обеспечения селективной работы защит с обратнозависимыми времятоковыми характеристиками, так как время срабатывания этих защит зависит от значения проходящего тока. Если бы мы не учли влияние тока нагрузки неповрежденных линий (200 А в этом примере), то могли бы ошибочно выбрать кон-

трольную точку с параметрами 0,7 с и 600 A и построить характеристику 1' (штриховая линия на рисунке 11.10). Однако при токе K3, равном 600 A, когда приходит в действие защита 2 и срабатывает через 1 с, через защиту 1 проходит не 600 A, а (600 - 200) A, т.е. 400 A. При этом токе время срабатывания защиты 1 с ошибочно выбранной характеристикой 1' будет более 1,1 с, и защита попросту не успеет сработать раньше, чем защита 2 (вышестоящая).

11.5 Рекомендации по расчёту уставок защиты от замыканий на землю

В электрических сетях 6-35 кВ, работающих с изолированной нейтралью, значения токов однофазного замыкания на землю (ОЗЗ) невелики. Однако ОЗЗ представляют большую опасность для оборудования электрических сетей и для находящихся вблизи места ОЗЗ людей и животных. В связи с этим Правила технической эксплуатации электрических станций и сетей требуют в одних случаях быстро автоматически отключать ОЗЗ, а в других - немедленно приступать к определению присоединения с ОЗЗ и затем отключать его.

11.5.1 Требования к защитам от замыканий на землю в сетях 6-35 кВ

В любых режимах работы нейтрали допускается действие защит от ОЗЗ только на сигнал, за исключением тех электроустановок, которые питают торфоразработки, карьеры, шахты, строительные механизмы и т.п. На таких объектах ОЗЗ сопровождаются высокими напряжениями прикосновения и шаговыми напряжениями, которые могут быть причиной несчастных случаев. Поэтому должна выполняться селективная защита от ОЗЗ с действием на отключение поврежденного присоединения без выдержки времени и еще дополнительная резервная защита, отключающая все источники питания (вводы) подстанции с небольшой задержкой (около 0,5 с).

При действии защиты на сигнал персонал обязан немедленно приступить к определению присоединения с ОЗЗ. При наличии селективной защиты на линиях это выполняется по показаниям сигнальных элементов, а при отсутствии селективной защиты - путем поочередного кратковременного отключения и включения линий и фиксации при этом напряжения нулевой последовательности.

Таким образом, защиты от ОЗЗ должны удовлетворять основным требованиям, которые предъявляются ко всем устройствам релейной защиты:

- селективность,
- быстродействие (особенно при необходимости отключения ОЗЗ),
- чувствительность,
- надежность.

Наряду с этим предъявляются требования, характерные для современных микропроцессорных защит (самодиагностика, запоминание событий, дистанционное получение информации и др.).

В устройствах МР 700-й серии реализованы четыре ступени защиты от замыканий на землю, которые могут срабатывать по измеренному или рассчитанному току нулевой последовательности основной частоты. Все ступени имеют независимую времятоковую характеристику, возможность пуска по напряжению и возможность блокировки от внешнего дискретного сигнала.

Токовая защита, реагирующая на действующее значение полного тока нулевой последовательности промышленной частоты (3I₀), применяется в сетях 6-35 кВ, работающих в режиме "Изолированная нейтраль" и в режиме "Нейтраль, заземленная через резистор".

Выбор уставки защиты от замыканий на землю производится по следующим соображениям:

а) по условию несрабатывания при внешнем ОЗЗ:

$$I_{c.3} \ge k_H I_{c.\phi u \partial. Marc},$$
 (13)

где $I_{c.\phi u\partial_{\cdot MAKC}}$ – емкостной ток замыкания на землю конкретного фидера;

kн − коэффициент надежности (принимается равным 1,5 для защиты имеющей выдержку времени порядка 0,3 сек и более).

Если требуется нулевая выдержка времени, то k_H должен быть увеличен до 3-4 для отстройки от броска емкостного тока в переходном режиме замыкания на землю. Поскольку в большинстве случаев защита действует на сигнал, целесообразно ввести выдержку времени, чтобы не понижать чувствительность защиты.

б) по условию срабатывания (чувствительности):

$$k_{\rm q} = \frac{I_{\rm C} \sum}{I_{\rm C,2}} \,. \tag{14}$$

Коэффициент чувствительности k_4 должен быть больше либо равен 1,25 для кабельных сетей, 1,5 для воздушных и 2,0 для защит от ОЗЗ двигателей с действием на отключение.

Уставка вводимая в устройство рассчитывается:

- для измеренного тока по нулевому каналу:

$$I_{yCT} = \frac{I_{C.3.}}{I_{H_2} \cdot \kappa_{TTHII}} ,$$

где I_{H_2} - номинальный ток четвёртого измерительного токового входа (1 или 5 A);

 $\kappa_{\it TTHII}$ - коэффициент трансформации трансформатора тока нулевой последовательности.

- для расчётного тока нулевой последовательности:

$$I_{VCT} = \frac{I_{C.3.}}{3I_{HOM.TT}},$$

где $I_{{\scriptscriptstyle HOM,TT}}$ - номинальный первичный ток фазного трансформатора тока.

Несмотря на меньшее влияние броска емкостного тока на работу цифровых реле при внешних ОЗЗ, не всегда возможно обеспечить селективность (избирательность) ненаправленной защиты в сети с изолированной нейтралью, особенно в сетях с нестабильной первичной схемой сети и, следовательно, периодически изменяющимися значениями собственных емкостных токов отдельных фидеров и суммарного емкостного тока, а также в сети с малым количеством фидеров. При резонансной настройке дугогасящей катушки данный принцип выполнения защиты от ОЗЗ вообще не может быть использован. Невозможно обеспечить селективную (избирательную) работу этого типа защиты в сетях с параллельно работающими фидерами 6(10) кВ и в сетях с еще более сложной конфигурацией.

Для сетей с компенсированной нейтралью вышеуказанный принцип не годится, так как величина тока на поврежденной линии может быть меньше, чем на неповрежденной, а направление этого тока может быть каким угодно. Для них используется тот факт, что реактор в нейтрали компенсирует только основную гармонику тока, а высшие гармоники остаются. Величина тока высших гармоник не постоянна, а зависит от схемы сети, тока нагрузки, уровня напряжения на шинах, поэтому величина тока в защите колеблется и, в общем случае, оценка чувствительности защиты по абсолютному замеру тока невозможна. Часто единственным методом настройки такой защиты является опыт замыкания на землю, при котором определяются величины токов высших гармоник на поврежденных фидерах. Наибольший эффект при применении метода высших гармоник, дает принцип сравнения величины тока на фидерах. Его можно организовать на подстанционном уровне управления. В любом случае величина тока высших гармоник на поврежденном фидере больше, чем на неповрежденном.

Величина уставки защиты от повышения тока высшей гармоники может быть рассчитана следующим образом:

$$I_{ycm.} = k_H \frac{I_{\Gamma. H3M}}{I_{HOM}}, \tag{15}$$

где kн - коэффициент надёжности (kн=3-3,5);

I_{Г.ИЗМ} — ток высшей гармоники, измеренный в месте установки защиты, в нормальном режиме.

11.5.2 Расчёт уставок направленной защиты от замыканий на землю в сетях 6-35 кВ

11.5.2.1 Выбор угла максимальной чувствительности

Для защит нулевой последовательности, реагирующих как на активную, так и на емкостную составляющие токов замыкания на землю, угол максимальной чувствительности $\phi_{\text{MЧ}}$ = 45° (рисунок 11.11).

Для защит нулевой последовательности, реагирующих на активную составляющую токов замыкания на землю, угол максимальной чувствительности $\phi_{M^4} = 0^\circ$.

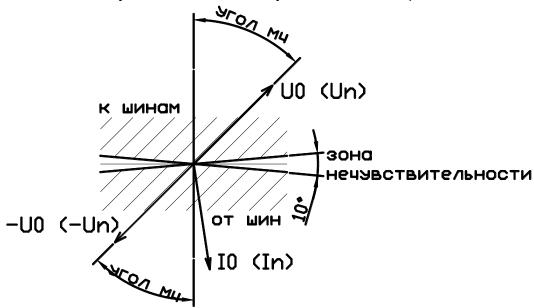


Рисунок 11.11 – Зона срабатывания направленной защиты от замыканий на землю

11.5.2.2 Выбор уставки по току срабатывания

Минимальный ток срабатывания направленных токовых защит не требуется отстраивать от емкостного тока защищаемого присоединения при внешнем замыкании на землю. Его надо отстраивать от суммарного максимального тока небаланса $I_{{}_{\it no}}$, который может протекать по рассматриваемому устройству защиты при внешнем O33 и вектор которого может располагаться в пределах зоны срабатывания защиты:

$$I_{c_{3}\min} = k_{H} \cdot I_{H\delta} \,, \tag{16}$$

где к_н – коэффициент запаса, значение которого можно принять равным 1,1−1,15.

Отстроиться от экстремальных небалансов, возникающих, например, при явлениях феррорезонанса, как правило, не удается, но от «рядовых» небалансов отстроиться необходимо. Сложность в том, что в процессе проектирования защиты обычно нет достаточной информации для вычисления некоторых составляющих суммарного небаланса и определять ток небаланса чаще приходится уже в процессе эксплуатации, когда необходимая информация доступна.

В процессе проектирования защиты можно исходить из обратного: обеспечения необходимой чувствительности:

$$I_{cs \min} = \frac{I'_{cs}}{\kappa_{U}}, \tag{17}$$

где k_4 – нормируемый коэффициент чувствительности (k_4 = 1,5–2);

 $I'_{\scriptscriptstyle \mathcal{S}}$ — суммарный минимальный емкостный ток сети за вычетом емкостного тока защищаемого присоединения в реальном «минимальном» режиме сети.

В процессе эксплуатации придется убедиться в том, что выбранное по условию (17) значение $I_{c_{2}\min}$ соответствует также условию (16), т.е. защита не сработает излишне при внешних замыканиях на землю от реально существующих в сети небалансов.

При расчете уставок защиты воздушной линии, кроме соблюдения условий (16), (17), необходимо рассчитать максимальное переходное сопротивление R_{ПЕР}, при котором защита будет способна отключить замыкание на землю и проверить, соответствуют ли они условиям эксплуатации. Желательно, чтобы защита была способна «чувствовать» замыкание на землю через переходное сопротивление порядка 3–5 кОм.

11.5.2.3 Выбор уставки по напряжению срабатывания защиты

Опыт показывает, что небаланс по напряжению нулевой последовательности чрезвычайно редко (при отсутствии феррорезонанса) превышает значение 2,5 В. В связи с этим можно принять $U_{\text{C3min}} = (5...7,5)$ В. При этом следует иметь в виду, что устройство MP будет чувствительнее стандартных устройств сигнализации по $3U_0$, имеющих уставку порядка 20 В. Т.е., например, при срабатывании устройства MP на сигнал, устройство сигнализации может и не сработать.

11.6 Рекомендации по расчёту уставок защиты от повышения тока обратной последовательности

Устройства МР 700-й серии имеют две ступени с независимыми выдержками времени. Каждая ступень имеет возможность блокировки от внешнего дискретного сигнала (пуска от инверсного сигнала), пуска по напряжению обратной последовательности.

Повышенные уровни несимметрии питающего напряжения опасны для двигателей увеличением уровня вибрации и нагрева. Завод-изготовитель двигателя обычно устанавливает допустимые значения токов обратной последовательности. В этом случае расчётные выражения для уставок защиты обратной последовательности строятся на основе паспортных данных двигателя.

Пример. Рассчитать уставки защиты от повышения тока обратной последовательности для двигателя с I_{HOM} =545 A, с длительно допустимым током обратной последовательности $I_{JЛ,JOП2}$ = 0,11· I_{HOM} и током обратной последовательности, допустимым на время 1 с $I_{BP,JOП2}$ =0,55· I_{HOM} . Трансформатор тока с I_{TT} =600/5.

Величина уставки, действующей на сигнал:

$$I_{ycm>} = \frac{I_{IJI.IJOII2}}{I_{H.MT3}} \cdot \frac{1}{\kappa_{TT}} = \frac{0.11 \cdot 545}{5} \cdot \frac{5}{600} = 0.1.$$

Величина уставки защиты с выдержкой времени, действующей на отключение:

$$I_{ycm>>} = \frac{I_{BP.ДO\Pi2}}{I_{H.MT3}} \cdot \frac{1}{\kappa_{TT}} = \frac{0.55 \cdot 545}{5} \cdot \frac{5}{600} = 0.5.$$

Если ступень от повышения тока обратной последовательности используется для быстродействующего отключения при сильной несимметрии, то ее уставка срабатывания должна быть установлена равной 60% от величины номинального фазного тока. Это позволит обеспечить срабатывание ступени при полном обрыве одной фазы. С другой стороны, обрыв фазы мог бы быть воспринят как междуфазное КЗ, поэтому величина выдержки времени этой ступени должна быть согласована с защитами от коротких замыканий. Значение тока обратной последовательности относительно фазного тока при обрыве одной фазы равно:

$$I_2 = \frac{1}{\sqrt{3}} I_{\text{harp}} = 0.58 I_{\text{harp}},$$

где Інагр – номинальный ток нагрузки.

Если защищаемым объектом является линия, то токовая защита обратной последовательности может служить для определения несимметричных повреждений с малыми величинами, ниже уставок срабатывания направленной и ненаправленной ступеней максимальных токовых защит.

Величина тока обратной последовательности при двухфазном КЗ:

$$I_2 = \frac{1}{\sqrt{3}} I_{\kappa} = 0.58 I_{\kappa},$$

где I_к – полный ток двухфазного КЗ.

Для того, чтобы предотвратить ложное срабатывание при повреждениях в других зонах защиты, уставка выдержки времени должна быть согласована с параметрами других защитных реле от коротких замыканий, установленных в сети.

Расчёт угла максимальной чувствительности ϕ_{M^q} , град, для направленных ступеней защиты от повышения тока обратной последовательности осуществляется поформуле

$$φ_{M4} = 180^{\circ} - φ_{Π} = 180^{\circ} - arctg(X_{Π}/R_{Π})$$

где X_{Π} – удельное индуктивное сопротивление линии, OM/км;

R_л – удельное активное сопротивление линии, OM/км.

11.7 Рекомендации по расчёту уставок защиты от обрыва провода

Чтобы обнаружить обрыв провода, можно применить токовую защиту обратной последовательности, Однако, на слабо нагруженной линии, ток обратной последовательности при обрыве провода, может быть близок к величине тока небаланса в нормальном режиме (обусловленный погрешностью ТТ, несимметрией нагрузки и т.д.) Таким образом, измерительный орган обратной последовательности может не отвечать условиям чувствительности.

Ступень от обрыва провода измеряет отношение токов обратной последовательности и прямой последовательности (I₂/I₁). При обрыве провода это соотношение меняется в значительной мере, что позволяет обеспечить хорошую чувствительность.

Соотношение токов обратной и прямой последовательности при обрыве провода определяется по выражению:

$$\frac{I_2}{I_1} = \frac{Z_0}{Z_0 + Z_2} \;,$$

где Z_0 и Z_2 сопротивления нулевой и обратной последовательностей соответственно. Величина отношения I2/I1 может изменяться в зависимости от места повреждения. Поэтому желательно применять как можно более чувствительную уставку. Практически, эта минимальная уставка управляется уровнем постоянно присутствующего в сети тока обратной последовательности. Она может быть определена расчётом сети или измерениями в стадии наладки. Измерения и расчёты, важно производить с учётом режимов максимальной нагрузки и режима наибольшей несимметрии нагрузки:

$$I_2/I_1 = k_{_H} \cdot I_{2_{_{HODM}}}/I_{1_{_{HODM}}},$$
 (18)

где k_н – коэффициент запаса, значение которого можно принять равным 1,15–1,2;

 $I_{^{2}_{hopm}}/I_{^{1}_{hopm}}$ — наибольшее соотношение токов обратной и прямой последовательности в режимах максимальной нагрузки и наибольшей несимметрии нагрузки.

Для обеспечения согласования с другими защитными устройствами и устройствами автоматики необходимо отстроиться от их выдержек времени:

$$t_{I2/I1} = t_{\text{max}} + \Delta t ,$$

где t_{\max} – время срабатывания ступени защиты или автоматики с наибольшей выдержкой времени.

В большинстве случаев достаточной уставкой для защиты от обрыва провода является отношение I_2/I_1 , равное (10-15) %, и задержка на срабатывание, равная 60 с.

11.8 Рекомендации по организации автоматического повторного включения

В устройствах МР 700-й серии предусмотрена возможность осуществления четырёхкратного автоматического повторного включения (АПВ) выключателя защищаемого присоединения.

АПВ имеет уставки по длительности первого, второго, третьего и четвёртого цикла АПВ, по длительности блокировки АПВ и по времени готовности АПВ.

После срабатывания МТЗ происходит пуск АПВ. При этом запускается таймер первого цикла (T_1), который отсчитав установленное время, действует на включение выключателя присоединения. Одновременно с подачей команды на включение запускается таймер $T_{\Gamma O T O B}$, который блокирует таймер первого цикла и подготавливает цепь пуска второго цикла АПВ. Если в течение времени $T_{\Gamma O T O B}$ не произошло отключения выключателя, то АПВ считается успешным и производится возврат АПВ в состояние готовности.

Если первое включение было на короткое замыкание, снова срабатывает МТЗ и происходит пуск таймера второго цикла АПВ (T_2). Таймер первого цикла в это время заблокирован.

Таймер второго цикла АПВ, отсчитав установленное время, действует на включение выключателя. Одновременно запускается таймер, который блокирует на время Тготов таймеры первого и второго циклов.

Если и второе включение было на короткое замыкание, срабатывает МТЗ и производит отключение. Работа по третьему и четвёртому крату АПВ происходит аналогично второму.

Если четвёртый крат был неуспешным, пуска АПВ больше не происходит.

По истечению времени Тготов после последнего крата, независимо от того было включение успешным или неуспешным, происходит возврат АПВ в исходное состояние.

При ручном или через СДТУ включении силового выключателя запускается таймер, который на время Т_{БЛОК} блокирует АПВ. Таким образом, при включении выключателя на короткое замыкание и срабатывании МТЗ пуска АПВ не происходит. АПВ будет готово к действию по истечении времени Т_{БЛОК}.

Время срабатывания первого крата АПВ определяется по следующим условиям:

a)
$$T_1 \ge t_{T,H} + t_{3AH} - T$$
 ypos, (19)

где t_{г.п} – время готовности привода, которое в зависимости от типа привода находится в пределах от 0,1 до 0,2 с

Туров – время отключения выключателя, параметр устройства MP (см. подраздел 11. 11).

Отсчёт времени крата запускается по истечению времени Тоткл после выдачи команды на отключение выключателя.

б)
$$T_1 \ge t_{\Gamma R} - t_{RR} + t_{34\Pi} - \text{Тоткл}$$
, (20)

где $t_{\Gamma.B}$ – время готовности выключателя, которое в зависимости от типа выключателя обычно находится в пределах от 0,2 до 2 с, но для некоторых типов может быть больше;

t_{В.В.} – время включения выключателя.

в)
$$T_1 \ge t_{\pi} + t_{34\pi} - \text{Тоткл},$$
 (21)

где t_Д – время деионизации среды в месте K3 на ВЛ, значение которого зависит от метеорологических условий, значения и длительности протекания тока K3, от рабочего напряжения.

Ориентировочное среднее значение $t_{\! \rm I}$ для сетей напряжением до 35 кВ включительно равно 0,1 с.

Время запаса $t_{\text{зап}}$ учитывает непостоянство времени готовности привода и погрешность таймера защиты, $t_{\text{зап}}$ =(0,3÷0,5) с.

Данные для расчета по условиям (19) и (20) находятся в технических паспортах приводов и выключателей. Однако, как правило, эти данные не востребованы, поскольку для оди-

ночных воздушных линий 6-35 кВ с односторонним питанием на практике время срабатывания Т₁ принимается в пределах (3÷5) с, что значительно больше, чем может получиться по условиям (19) – (21). При такой выдержке времени до момента АПВ линии наиболее вероятно самоустранение причин, вызвавших неустойчивое КЗ (падение деревьев, набросы веток и других предметов, приближение к проводам передвижных механизмов), а также успевает произойти деионизация среды в месте КЗ, ПУЭ допускает увеличение выдержки времени устройств АПВ однократного действия именно с целью повышения эффективности действия этих устройств.

Если для потребителей длительный перерыв электроснабжения является недопустимым, то время t_{апв} следует выбрать по условиям (19) – (21).

Время срабатывания второго, третьего и четвёртого цикла АПВ:

$$T \ge (10 \div 15) \,\mathrm{c} \tag{22}$$

Это объясняется необходимостью подготовки выключателя к возможному третьему отключению КЗ при устойчивом повреждении линии. Наряду с этим увеличение Т повышает вероятность успешного действия АПВ во втором цикле. Для выключателей с пружинными приводами Т не должно быть меньше времени возврата привода в состояние готовности к АПВ, т. е. времени натяжения пружин, рекомендуемое значение Т не менее 15÷20 с.

Время готовности определяется выражением:

$$T_{\Gamma OTOB} = t_{\text{GKN}} + t_{\text{3auu}} + t_{\text{omKN}} + t_{\text{3an}}, \tag{23}$$

где $t_{вкл}$ – наибольшее время включения выключателя;

t_{защ} – наибольшая выдержка времени ступени защиты (в т.ч. и внешней), которая может произвести пуск АПВ;

t_{откл} – время отключения выключателя.

Время блокировки АПВ Тылок обычно принимается равным (10÷15) с.

11.9 Рекомендации по организации автоматического включения резерва (АВР)

В устройствах МР 700-й серии предусмотрена возможность осуществления автоматического включения резерва. Запуск АВР может производиться по следующим факторам:

- **а)** отключение выключателя по команде от ключа, от кнопок, внешнее отключение, от СДТУ;
 - б) самопроизвольное отключение;
 - в) отключение от защиты с разрешённым АВР;
- **г)** по внешнему сигналу «СТАРТ ABP» (сигналу исчезновения напряжения на рабочем источнике).

Необходимыми условиями запуска АВР являются:

- отсутствие внутреннего и внешнего сигнала блокировки;
- наличие сигнала «СРАБАТЫВАНИЕ ABP», сигнала наличия напряжения на резервном источнике питания и отключённое состояние резервного выключателя. Данные сигналы могут быть собраны как внешняя цепочка или на входных логических сигналах.

Также в логике ABP используются следующие внешние сигналы:

- «БЛОКИРОВКА»;
- «СБРОС» (сброс блокировки или при отсутствии блокировки сброс ABP в начальное состоянии).

Первый вариант работы АВР.

При появлении одного из первых трёх факторов пуска происходит проверка отключённого состояния выключателя, отсутствия блокировки, наличия сигнала «СРАБАТЫВАНИЕ АВР». При выполнении этих условий формируется команда «ВКЛЮЧИТЬ АВР» (включить резерв).

Если отсутствует сигнал «СРАБАТЫВАНИЕ ABP», то устройство будет ожидать его появление и при его появлении будет выдана команда «ВКЛЮЧИТЬ ABP».

Второй вариант работы АВР.

При появлении сигнала «СТАРТ АВР» и включённом состоянии выключателя через время Т_{АВР} будет выдана команда «ОТКЛЮЧИТЬ ВЫКЛЮЧАТЕЛЬ». При появлении сигнала «ВЫКЛЮЧАТЕЛЬ ОТКЛЮЧЁН» производится проверка наличия сигнала «СРАБАТЫВАНИЕ АВР» и отсутствия блокировки. При выполнении этих условий формируется команда «ВКЛЮЧИТЬ АВР». Если отсутствует сигнал «СРАБАТЫВАНИЕ АВР», то устройство будет ожидать его появление и при его появлении будет выдана команда «ВКЛЮЧИТЬ АВР» (включить резерв).

Признаком успешного срабатывания ABP является исчезновение сигнала «СРАБАТЫВАНИЕ ABP» через время Тимп после выдачи команды на включение резерва. Условиями возврата являются:

- появление сигнала «BO3BPAT» (сигнала появления напряжения на рабочем источнике и включённого состояния выключателя резерва);
 - отключённое положение выключателя;
 - отсутствие внешнего и внутреннего сигнала блокировки;
 - успешное срабатывание АВР.

При появлении этих условий через время Твз выдаётся команда «ВКЛЮЧИТЬ ВЫКЛЮЧАТЕЛЬ». Если выключатель включился, то через время Тот выдаётся команда «ОТКЛЮЧИТЬ АВР» (отключить резерв). При пропадании сигнала «ВОЗВРАТ АВР» возврат считается успешным. Если сигнал «ВОЗВРАТ» не пропал, то выдаётся команда «ОТКЛЮЧИТЬ ВЫКЛЮЧАТЕЛЬ» и АВР блокируется.

Функциональные схемы АВР приведены на рисунках 6.20 – 6.28. Представленные блоки реализованы программно.

Перед использованием ABP рекомендуется изучить логические схемы работы ABP (см. рисунки 6.20-6.28).

Важно! Внешний сигнал блокировки или неуспешная работа ввода или возврата АВР приводят к фиксации блокировки схемы АВР. При этом в «Журнале системы» формируется запись о причине и срабатывает сигнал «Блокировка АВР». Сброс блокировки АВР и возврат схемы в нормальный режим происходит путем подачи команды на управление выключателем или по внешнему сигналу «Сброс блокировки». Логические схемы блокировки / сброса блокировки АВР представлены на рисунках 6.25 — 6.27.

Для оперативного вывода/ввода ABP можно применять один из следующих способов:

1. Для вывода из работы использовать дискретный вход, заведённый на логический вход логики ABP «**Блокировка**», при этом уставка ABP «**Сброс**» должна быть задана как «**Разрешено**».

Рекомендуется выполнять ввод в работу ABP при отключенном положении выключателя посредством переключения ключа «Ввод/вывод ABP» в положение «Введено». После включения выключателя блокировка ABP будет сброшена.

Если переключение ключа «Ввод/вывод ABP» в положение «Введено» было выполнено при включённом положении выключателя, то сброс блокировки должен быть выполнен посредством подачи дополнительной команды на включение выключателя.

2. Для вывода из работы ABP использовать дискретный вход, который заведён на логический вход логики ABP «Блокировка». Для ввода в работу ABP по положению ключа «Введено» необходимо сигнал с ключа завести через «импульсный таймер по спаду 2-го типа» с уставкой по времени 100 мс на выход ССЛ, который в свою очередь должен быть

заведен на вход «**Сброс блокировки**» в соответствии с рисунком 11.12. Таким образом, при положении ключа «Выведено» АВР будет блокирован, а при переключении ключа в положение «Введено» блокировка АВР будет сниматься.

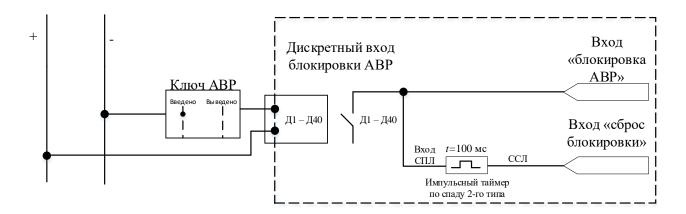


Рисунок 11.12 – Схема для оперативного ввода/вывода АВР из работы

Пуск ABP может осуществляться от собственных измерительных органов напряжения или частоты устройства MP.

При использовании ступени по частоте как пускового органа, она должна быть введена в режиме «Отключение» или «Осциллограф» и по её срабатыванию должно быть разрешено ABP. В настройках ABP должен быть разрешен пуск по срабатыванию защиты.

Частота срабатывания частотного пускового органа ABP принимается в пределах (46÷48) Гц. Замедление частотного пускового органа не выполняется.

Напряжение срабатывания реле, реагирующих на снижение напряжения, следовало бы выбирать таким образом, чтобы пусковой орган срабатывал только при полном исчезновении напряжения. Однако, выбор очень низкого напряжения срабатывания вызовет замедление действия ABP, поскольку двигатели нагрузки, вращаясь по инерции после отключения питания, могут при определенных условиях поддерживать на шинах достаточно медленно снижающееся напряжение. Поэтому рекомендуется принимать напряжение срабатывания минимальных реле напряжения $U_{\text{с.р.}}$ равным:

$$U_{c,p} = (0.25 \div 0.4)U_{HOM}. \tag{24}$$

При использовании в качестве пускового органа собственной ступени по напряжению следует учитывать ту особенность устройств МР, что при снижении напряжения всех фаз ниже 5 В, ступени по напряжению блокируются. Поэтому рекомендуется применять следующий способ реализации АВР с пуском по напряжению от собственной ступени:

- конфигурируется ступень от повышения напряжения (режим «Введено») с уставкой пуска ABP, там же реализуется выдержка времени на срабатывание ABP;
- инверсный сигнал срабатывания данной ступени заводится на срабатывание внешней защиты, введенной в режиме «Отключение» или «Осциллограф». По данной ступени внешней защиты необходимо разрешить работу ABP. В настройках ABP должен быть разрешен пуск по срабатыванию защиты.

Пуск схемы ABP при снижении напряжения на шинах ниже принятого по формуле (24) должен производиться с выдержкой времени для предотвращения излишних действий ABP при K3 в питающей сети или на отходящих элементах, а также для создания при необходимости определенной последовательности действий устройств противоаварийной автоматики в рассматриваемом узле. Эта выдержка времени может быть реализована либо непосредственно в схеме пуска ABP, либо в схеме самого ABP (Тср).

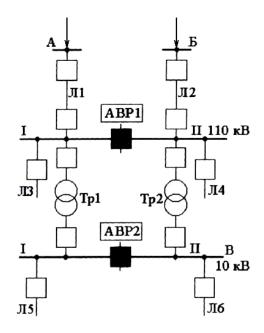


Рисунок 11.13 – Схема нормально разомкнутой распределительной сети

Время срабатывания ТСР АВР должно выбираться:

а) по условию отстройки от времени срабатывания тех защит, в зоне действия которых КЗ могут вызывать снижения напряжения ниже принятого по формуле (24):

$$\mathsf{T}_{\mathsf{CP}} \geq \mathsf{t}_1 + \Delta \mathsf{t} \; ; \tag{25}$$

$$\mathsf{T}_{\mathsf{CP}} \ge \mathsf{t}_2 + \Delta \mathsf{t} \; , \tag{26}$$

- где t₁ наибольшее время срабатывания защиты присоединений шин высшего напряжения подстанции (например, защиты линий ЛЗ или Л4 при выборе уставок ABP2 в схеме на рисунке 11.13);
 - t₂ то же для присоединений шин, где установлен ABP (для ABP2 линий Л5, Л6 или трансформаторов, рисунок 11.13);
 - Δt ступень селективности, принимаемая в зависимости от типов защит установленных на данных присоединениях с учётом погрешности по времени измерительного органа напряжения.
- **б)** по условию согласования действий ABP с другими устройствами противоаварийной автоматики узла (АПВ, ABP, делительной автоматикой). Например, для устройства ABP1 (рисунок 11.14) с целью ожидания срабатывания двух циклов АПВ Л1(Л2):

$$T_{CP(ABP1)} \ge (t_{c.3.} + t_{1A\Pi B} + t'_{c.3.} + t_{2A\Pi B})_{\Pi_1(\Pi_2)} + t_{3a\Pi},$$
 (27)

где t_{с.з.} - время действия той ступени защиты линии Л1(Л2), которая надежно защищает всю линию;

t'_{с.₃} - время действия защиты Л1(Л2), ускоряемой после АПВ;

 $t_{1A\Pi B}, t_{2A\Pi B}$ - уставки по времени первого и второго циклов двукратного АПВ линии Л1(Л2);

t₃ап ≈ (2,5÷3,5) с в зависимости от типов выключателей, реле времени в схемах защит, АПВ, АВР.

Для устройства ABP2 (рисунок 11.14) с целью ожидания срабатывания ABP1, расположенного ближе к источникам питания, время срабатывания выбирается исходя из условия:

$$T_{CP(ABP2)} = T_{CP(ABP1)} + t_{3an}, \qquad (28)$$

АВР, реализованное в устройствах МР, предусматривает функцию автоматического возврата к первичной схеме доаварийного режима. Для устройств АВР с такой функцией в целях ускорения действия ПУЭ разрешает не ждать успешного срабатывания АПВ питающей (рабочей) линии, т.е. осуществлять выбор Т_{СР} только по условиям (25), (26).

Длительность импульса жёстко назначенных реле включить/отключить выбирается больше, чем наибольшее время включения/отключения выключателя, т.к. по окончанию импульса устройство проверяет состояние блок-контактов выключателя и при несоответствии их положения предполагаемому выдаёт сигнал о неисправности выключателя. С другой стороны длительность импульса не должна быть слишком велика, т.к. она является составляющей времени перерыва питания при ABP. Рекомендуется принимать длительность импульса не более 0,5 с.

Включение рабочего выключателя после восстановления напряжения на рабочем источнике в типовой схеме ABP производится с выдержкой времени, равной $T_{\rm B3}$ = (14÷15) с (для того чтобы убедиться в полной исправности рабочего источника). Еще через $T_{\rm OT}$ = (4÷5) с отключается резервный выключатель. Таким образом, примерно через 20 с восстанавливается нормальная схема подстанции.

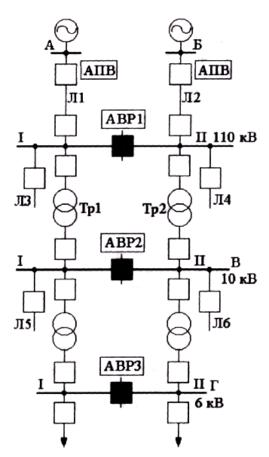


Рисунок 11.14 – Схема нормально разомкнутой распределительной сети с несколькими с устройствами АВР и АПВ линий

11.10 Рекомендации по организации защиты шин

Короткие замыкания на шинах комплектных распредустройств часто приводят к быстрому разрушению поврежденной и смежных ячеек, если они отключаются максимальной защитой ввода. Поэтому, как правило, ячейки снабжаются специальными устройствами защиты шин.

11.10.1 Организация дуговой защиты шин

Принцип действия дуговой защиты основывается на оптическом или динамическом действии дуги. Соответственно выделяют световые и клапанные датчики реагирующие на дуговые замыкания. Широко распространены устройства дуговой защиты на фототиристорах.

Дуговая защита шин может быть реализована в устройствах МР на внешней или токовой защите. Пуск дуговой защиты может осуществляться по повышению тока, в этом случае предотвращается отключение выключателя защитой при ложном срабатывании фототиристорных датчиков. В устройствах МР дуговая защита с пуском по току может быть реализована и на внешней защите (параметр «Вход» должен быть задан как измерительный орган токовой ступени, например «I> ИО»; параметр «Блокировка» - запрограммирован как «DN Инв.», где DN – дискретный вход, на который подаётся сигнал с фототиристора).

11.10.2 Организация логической защиты шин (ЛЗШ)

Принцип действия ЛЗШ основывается на том, что при КЗ на шинах, ток протекает только через питающие присоединения. При КЗ в точке К1 (рисунок 11.15) защита фидера блокирует быстродействующую ступень на вводе (секционном выключателе). При замыкании на шинах (точка К2, рисунок 11.15) защиты фидеров не чувствуют повреждения и блокировки быстродействующей защиты на вводе не происходит.

Блокирующие органы ЛЗШ выводятся от каждого фидера, собираются вместе и поступают на дискретные входы защиты ввода и секционного выключателя. При коротком замыкании в точке К1 срабатывает измерительный орган защиты фидера 3_{Q1} и замыкаются её контакты 3_{Q1} .1 и 3_{Q1} .2, блокируя быстродействующую защиту ввода и секционного выключателя. При К3 в точке К2, т.е. на шинах, ток К3 не протекает ни в одной защите отходящей линии, поэтому быстродействующая ступень не блокируется и работает на отключение ввода (или секционного выключателя).

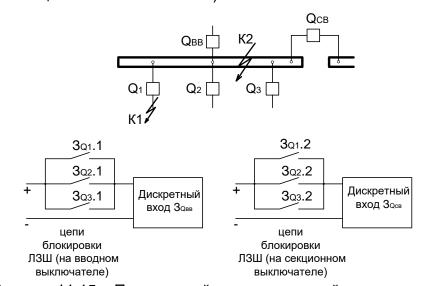


Рисунок 11.15 – Принцип действия логической защиты шин

В качестве исполнительного органа ЛЗШ можно использовать ступень токовой защиты с выдержкой времени, рассчитанной по следующей формуле:

$$t_{J3III} = t_{cpa\delta.IIO} + t_{cpa\delta.p} + t_{ofp.\partial.c.} + t_{san},$$
(29)

где $t_{cpaar{o},HO}$ – время срабатывания измерительного органа защиты фидера

$$(t_{cpa6.UO} = 50 \text{ mc});$$

 $t_{cnab,p}$ — время срабатывания релейного выхода ($t_{cnab,p} \approx 5 \,\mathrm{Mc}$);

 $t_{oбp. \delta.c.}$ — время обработки сигнала с дискретного входа на защите питающего присоединения ($t_{oбp. \delta.c.} \approx 20\,\mathrm{Mc}$);

 t_{3an} – время запаса ($t_{3an} \approx 50$ мс).

Исходя из (29) рекомендуется принимать уставку по времени ЛЗШ не менее 150 мс. Уставка по току ЛЗШ выбирается исходя из условия отстройки от сверхтоков послеаварийных перегрузок, т.е. после отключения короткого замыкания на отходящей линии:

$$I_{C.3} = \frac{k_H \cdot k_{C3\Pi}}{k_B} I_{pa6.makc}, \tag{30}$$

где Іраб. макс – максимальный рабочий ток распредустройства.

В случае исчезновения напряжения на шинках ЛЗШ при коротком замыкании на фидере ЛЗШ не будет блокирована и произойдёт ложное отключение всей секции. Поэтому рекомендуется выполнять контроль напряжения на шинках ЛЗШ с блокировкой ЛЗШ при отсутствии на них напряжения.

11.11 Рекомендации по организации устройства резервирования отказа выключателя (УРОВ)

Принцип действия УРОВ следующий:

- при КЗ срабатывает защита, вырабатывает сигнал на отключение выключателя;
- если через время, достаточное для отключения выключателя ток не пропадает, то выдаётся сигнал на отключение вышестоящего выключателя защитой без выдержки времени.

Принцип реализации УРОВ на устройствах МР показан на рисунке 11.16. Пусковые органы УРОВ выводятся от каждого фидера, собираются вместе и поступают на дискретные входы защиты ввода и секционного выключателя. При коротком замыкании в точке К1 срабатывает ступень защиты фидера 3_{Q1} и одновременно с подачей команды на отключение Q1 запускается таймер $T_{\text{откл}}$, если по истечении времени $T_{\text{откл}}$ ток не пропал замыкаются контакты $3_{Q1}.3$ и $3_{Q1}.4$, подавая сигнал на отключение вводного и секционного выключателя.

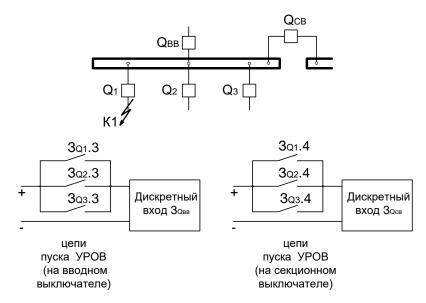


Рисунок 11.16 – Принцип реализации УРОВ

Время Т_{откл} («ВРЕМЯ ОТКЛЮЧЕНИЯ» задаётся в подменю «ВЫКЛЮЧАТЕЛЬ» меню «ВХОДНЫЕ СИГНАЛЫ») определяется следующим выражением:

$$T_{om\kappa,n} = t_{om\kappa,n} + t_{cpa\delta,p} + t_{o\delta p,\delta,c.} + t_{3an}, \tag{31}$$

где $t_{\text{откл}}$ – наибольшее время отключения выключателя;

 t_{3an} — время запаса ($t_{3an} \approx 50$ мс).

Т_{откл} рекомендуется принимать равным (0,15÷0,25) с в зависимости от типа применяемых выключателей.

Отключение по сигналу УРОВ можно реализовать на внешней защите или на ступени защиты от повышения тока. Во втором случае пуск защиты осуществляется по сигналу УРОВ, при этом используется уставка по току, которая выбирается исходя из условия обеспечения чувствительности к КЗ в конце отходящих линий и желательно должна быть выше наибольшего нагрузочного тока распредустройства. Первый критерий является приоритетным. Реализацией УРОВ на ступени токовой защиты достигается более высокая надёжность работы УРОВ, т.к. снижается вероятность ложного действия этой автоматики в случае самопроизвольного (случайного) замыкания контакта в цепи пуска УРОВ.

11.12 Рекомендации по организации УРОВЗ (совместной реализации УРОВ и ЛЗШ)

В устройствах 700-й серии реализована логика УРОВЗ (рисунок 11.17). Принцип действия УРОВЗ основывается на совместной блокировке быстродействующей защиты на питающем присоединении пусковыми органами УРОВ и ЛЗШ.

В устройствах 700-й серии УРОВЗ введено в работу, если одновременно введены логика УРОВ и ЛЗШ.

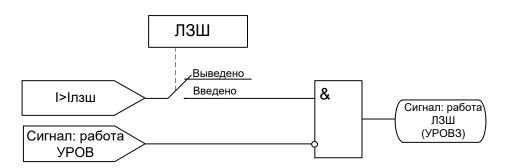


Рисунок 11.17 – Логическая схема УРОВЗ

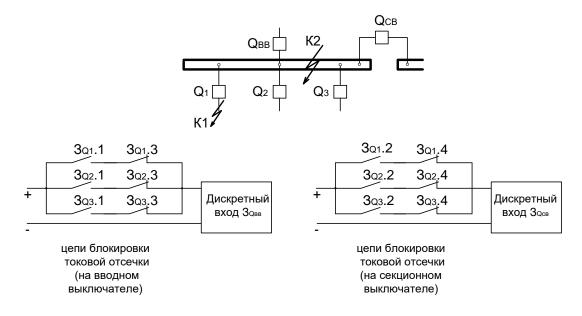


Рисунок 11.18 – Схема цепочки ЛЗШ-УРОВ

При возникновении короткого замыкания К1 (рисунок 11.18) срабатывает измерительный токовый орган защиты фидера – замыкаются реле 3_{Q1}.1, 3_{Q1}.2 и блокируют токо-

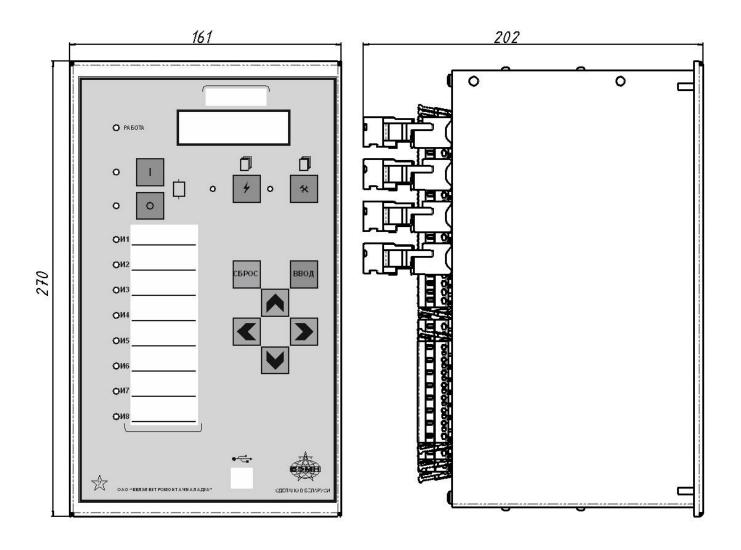
вые отсечки на вводе или секционном выключателе. Если после истечения выдержки времени $T_{\text{откл}}$ от момента подачи команды на отключение выключателя Q_1 ток не пропадает, то размыкаются выходные реле защиты $3_{Q1}.3$, $3_{Q1}.4$ (реализующие функцию УРОВ), деблокируя токовые отсечки на питающих присоединениях. Отсечки отрабатывают, отключая питающие присоединения. Если произошло повреждение в точке K_2 , то контакты $3_{Q1}.1$, $3_{Q1}.2$ остаются разомкнутыми, работа ЛЗШ разрешена и она отключает Q_{BB} (Q_{CB}).

Исходя из принципа действия ЛЗШ на быстродействующей защите питающих присоединений необходима уставка по времени не менее 150 мс. Уставка по току отсечки выбирается исходя из условия отстройки от сверхтоков послеаварийных перегрузок, т.е. после отключения короткого замыкания на отходящей линии, а также по условию чувствительности к коротким замыканиям в конце фидеров. Оба этих условия должны быть строго выполнены для обеспечения правильного функционирования УРОВ и ЛЗШ, чем ограничивается возможность применения данной логики.

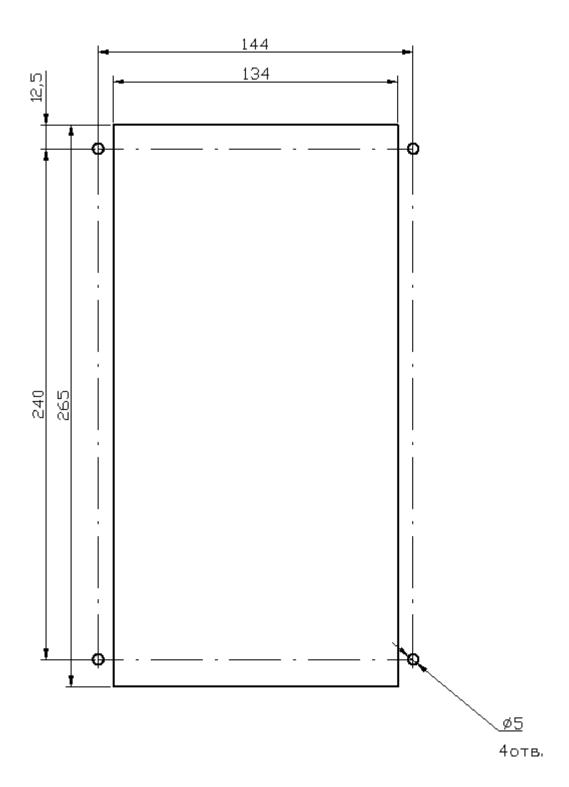
УРОВЗ имеет преимущество в том, что позволяет использовать только одни общие шинки УРОВ и ЛЗШ, исключает ложное действие УРОВ в случае неправильных действий персонала при испытаниях выключателей фидеров. Недостатком УРОВЗ является увеличение времени отключения при отрабатывании логики УРОВ по сравнению с «чистым» УРОВ (при применении «СХЕМЫ 1» см. п. 6.5.2). В данном случае время выдачи команды на отключение вышестоящего выключателя возрастает на время работы быстродействующей ступени, т.е. на 150÷200 мс (т.е. общее время УРОВЗ составит 150÷200+250÷300=400÷500 мс).

При применении ЛЗШ (УРОВЗ см. п. 6.5.2) по «СХЕМЕ 2» недостатком по сравнению с раздельной реализацией ЛЗШ и УРОВ является увеличение уставки по времени быстродействующей ступени на питающих присоединениях с 150÷200 мс до 250÷300 мс (времени УРОВ).

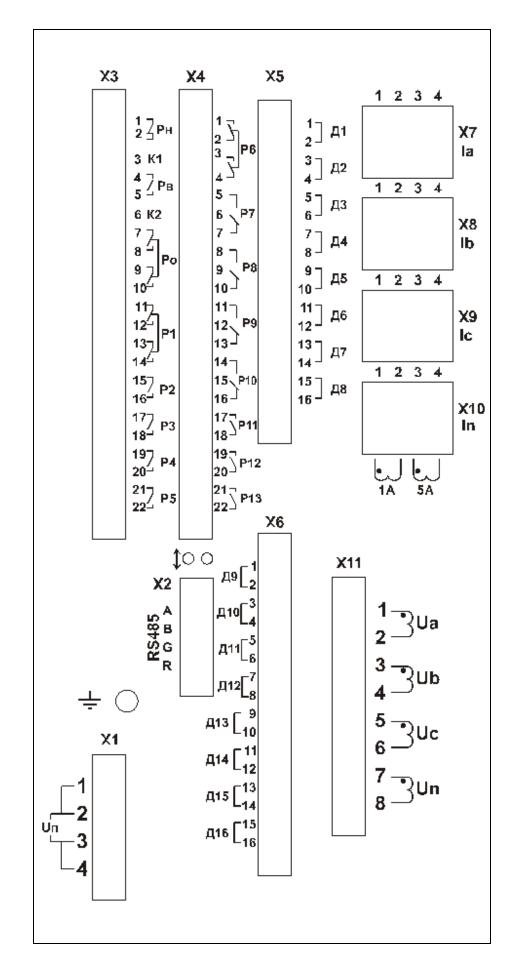
12 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

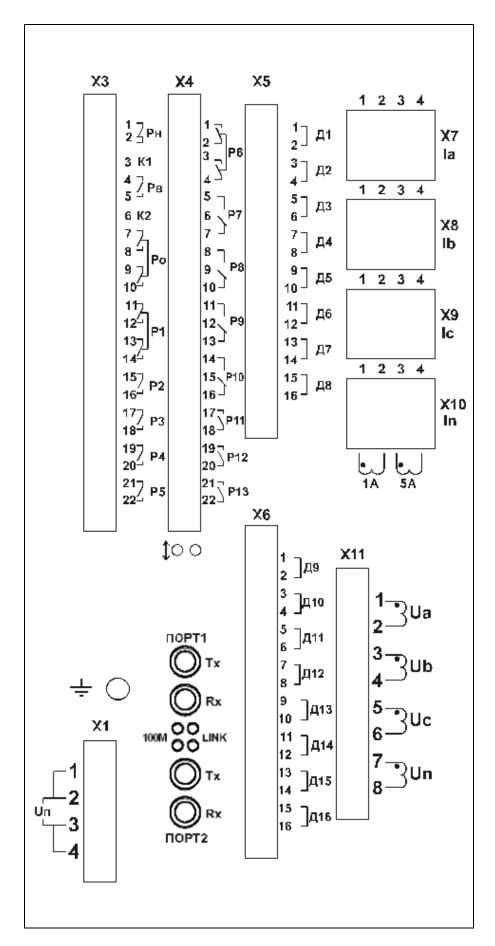

- 12.1 МР741 должно допускать транспортирование всеми видами транспорта в упаковке при условии защиты от прямого воздействия атмосферных осадков. При транспортировании воздушным транспортом МР741 в упаковке должно размещаться в отапливаемом герметизированном отсеке. Размещение и крепление упакованного МР741 в транспортном средстве должно исключать его самопроизвольные перемещения и падения.
- 12.2 Условия транспортирования и хранения МР741 в части воздействия климатических факторов:
 - температура окружающего воздуха от минус 40 до плюс 70 °C;
- относительная влажность до 95 % при 35 °C и более низких температурах без конденсации влаги.

МР741 может храниться в сухих неотапливаемых помещениях при условии отсутствия пыли, паров кислот, щелочей, агрессивных газов, вызывающих коррозию металла и разрушение пластмасс.


13 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ

Сертификат соответствия № EAЭC RU C-BY.AД07.B.00080/19 (серия RU №0147663) о соответствии требованиям TP TC 004/2011 «О безопасности низковольтного оборудования», и TP TC 020/2011 «Электромагнитная совместимость технических средств».


Приложение 1 Габаритные и присоединительные размеры, размеры окна под установку устройства и вид задней панели


Габаритные размеры МР741

Размеры окна и монтажных отверстий под установку МР741

Вид задней панели МР741

Вид задней панели MP741 с двумя оптическими портами ST (100BASE-Fx)

Приложение 2 Схемы внешних присоединений МР741

Схема с 3-мя трансформаторами тока (для Ін = 1 А)

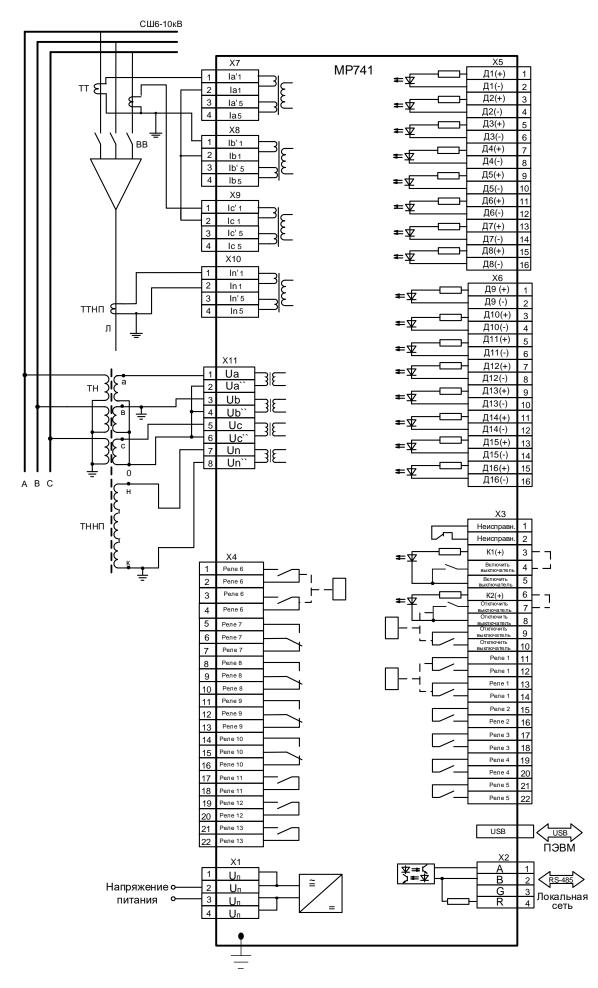


Схема с 2-мя трансформаторами тока (для Ін = 1 А)

Примечание: в случае применения данной схемы подключения следует учитывать возможность некорректной работы токовой защиты по обратной последовательности при пуске двигателя. В этом случае рекомендуется на время пуска блокировать ступени I2 или отстраивать их от пусковых режимов по времени.

Внимание! Для правильного определения направления необходимо соблюдать одинаковую полярность при подключении токов и напряжений, т.е. подключать начало фазы к зажиму с меньшим номером, конец к зажиму с большим одновременно для цепей тока и напряжения, либо наоборот начало к зажиму с большим номером, конец к зажиму с меньшим.

Например: (см. схему с 3-мя трансформаторами тока) общая точка входов по напряжению собирается на зажимах X11.2, X11.4, X11.6, а входов по току на контактах «2» (в случае, когда Ін = 1 А) или на контактах «4» (в случае, когда Ін = 5 А) разъёмов X7, X8, X9.

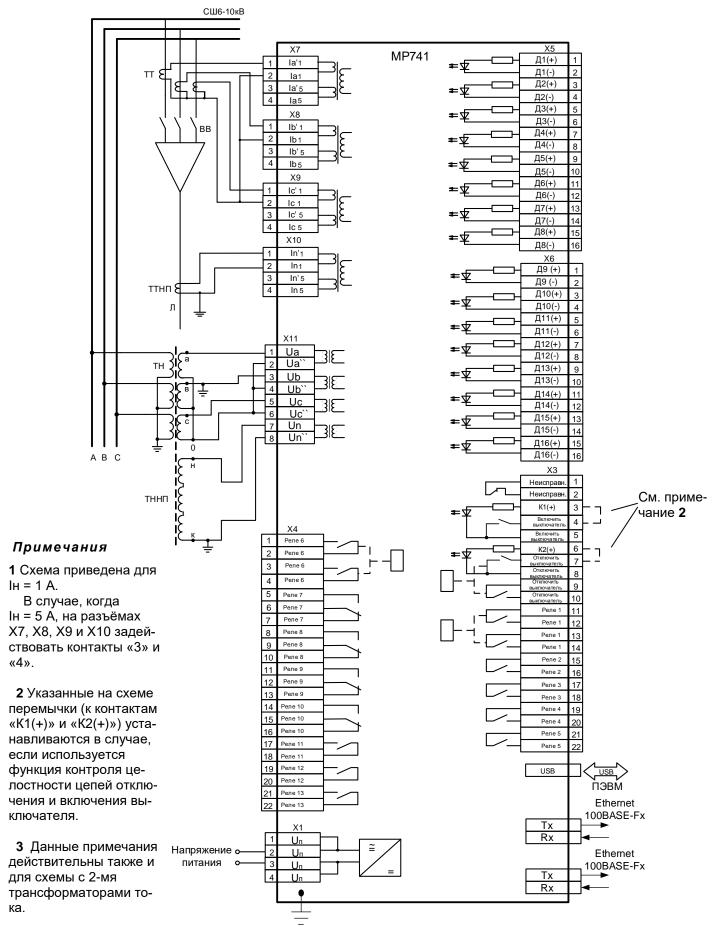


Схема с 3-мя трансформаторами тока (для Iн = 1 A). Вариант исполнения с двумя оптическими портами ST (100BASE-Fx)

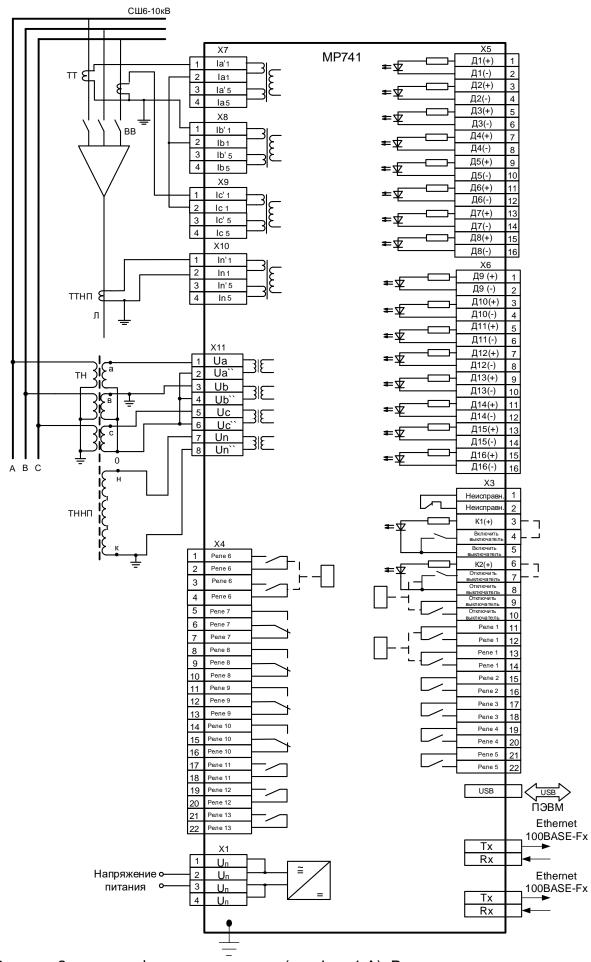


Схема с 2-мя трансформаторами тока (для Iн = 1 A). Вариант исполнения с двумя оптическими портами ST (100BASE-Fx)

Приложение 3 – Таблицы

Таблица 3.1 - Список сигналов, используемых при формировании выходного логического сигнала

Код	Тип сигнала			
1	Откл. выкл.			
2	Вкл. выкл.			
3	Неисправность			
4	Гр. уставок			
2 3 4 5 6	Резерв			
6	Сигнализация			
7	Отключение			
8	Земля			
9	АВР Вкл.			
10	АВР Откл.			
11	АВР Блок.			
12	Резерв Работа ЛЗШ			
13	Работа ЛЗШ			
12 13 14	Работа УРОВ			
15	Вкл. по АПВ			
16	Ускорение			
17	Д1			
18	Д2			
19	Д3			
20	Д3 Д4			
21 22	Д5			
22	Д6			
23	Д7			
24	Д8			
25	Д9			
26	Д10			
27	Д11			
28	Д12			
29	Д13			
30	Д14			
31	Д15			
32	Д16			
33	Л1			
34	Л2			
35	Л3			
36	Л4			
37	Л5			
38	Л6			
39	Л7			
40	Л8			
	I> NO			
42	I>CPAE			
43	I>> NO			
44	I>> CPAB			
45 46	I>>> NO			
46	I>>> СРАБ I>>>> ИО			
48	I>>>> CPAБ			

Код	Тип сигнала
49	12> ИО
50	I2> CPAБ
51	12>> ИО
52	12>> СРАБ
53	10> NO
54	10> СРАБ
55	ON <<01
56	10>> СРАБ
57	In> ИО
58	In> CPAБ
59	In>> ИО
60	In>> СРАБ
61	Ir> NO
62	Іг> СРАБ
63	12/11 ИО
64	I2/I1 СРАБ
65	F> VO
66	F> CPA6
67	F>> ИО
68	F>> СРАБ
69	F< ИО
70	F< CPA6
71	F<< ИО
72	F<< CPAБ
73	U> NO
74	U> СРАБ
75	U>> NO
76	U>> СРАБ
77	U< NO
78	U< CPAБ
79	U<< NO
80	U<< CPAБ
81	U2> ИО
82	U2>СРАБ
83	U2>> ИО
84	U2>>CPA6
85	U0> NO
86	U0>СРАБ
87	U0>> NO
88	U0>>CPAE
89	B3-1 CPAE
90	B3-2 CPAE
91	B3-3 CPAE
92	B3-4 CPAE
93	B3-5 CPAE
94	B3-6 CPAE
95	B3-7 CPAE
96	ВЗ-8 СРАБ

Продолжение таблицы 3.1		
Код	Тип сигнала	
97	ССЛ1	
98	ССЛ2	
99	ССЛ3	
100	ССЛ4	
101	ССЛ5	
102	ССЛ6	
103	ССЛ7	
104	ССЛ8	
105	ССЛ9	
106	ССЛ10	
107	ССЛ11	
108	ССЛ12	
109	ССЛ13	
110	ССЛ14	
111	ССЛ15	
112	ССЛ16	
113	ССЛ17	
114	ССЛ18	
115	ССЛ19	
116	ССЛ20	
117	ССЛ21	
118	ССЛ22	
119	ССЛ23	
120	ССЛ24	

Таблица 3.2 – Сигналы внешних защит

Код		Тип сигнала
0	HET	
1	Д1	<ИНВ>
2	Д1	
3	Д2	<ИНВ>
4 5	Д2	
5	Д3	<ИНВ>
6	Д3	
7	Д4	<ИНВ>
8	Д4	
9	Д5	<ИНВ>
10	Д5	
11	Д6	<ИНВ>
12	Д6	
13	Д7	<ИНВ>
14	Д7	
15	Д8	<ИНВ>
16	Д8	
17	Д9	<ИНВ>
18	Д9	
19	Д10	<ИНВ>
20	Д10	
21	Д11	<ИНВ>
22	Д11	
23	Д12	<ИНВ>
24	Д12	
25	Д13	<ИНВ>
26	Д13	
27	Д14	<ИНВ>
28	Д14	
29	Д15	<ИНВ>
30	Д15	
31	Д16	<ИНВ>
32	Д16	
33	Л1	<ИНВ>
34	Л1	
35	Л2	<ИHB>
36	Л2	
37	Л3	<ИНВ>
38	Л3	
39	Л4	<ИНВ>
40	Л4	
41	Л5	<ИНВ>
42	Л5	
43	Л6	<ИНВ>
44	Л6	
45	Л7	<ИНВ>
46	Л7	14115
47	Л8	<ИHB>
48	Л8	

Код	Тип сигнала
49	ВЛС1 <ИНВ>
50	ВЛС1
51	ВЛС2 <ИНВ>
52	ВЛС2
53	ВЛС3 <ИНВ>
54	ВЛС3
55	ВЛС4 <ИНВ>
56	ВЛС4
57	ВЛС5 <ИНВ>
58	ВЛС5
59	ВЛС6 <ИНВ>
60	ВЛС6
61	ВЛС7 <ИНВ>
62	ВЛС7
63	ВЛС8 <ИНВ>
64	ВЛС8
65	I> NO <nhb></nhb>
66	I > NO
67	I > CPAБ <ИHB>
68	I> СРАБ
69	I>> ИО <ИНВ>
70	I >> NO
71	I >> CPAБ <ИНВ>
72	I >> СРАБ
73	I>>> ИО <ИНВ>
74	I >>> NO
75	I>>> CPAБ <ИНВ>
76	I>>> СРАБ
77	I >>>> ИО <ИНВ>
78	I >>>> NO
79	I >>>> СРАБ <ИНВ>
80	I >>>> СРАБ
81	12> ИО <ИНВ>
82	12> ИО
83	I2> СРАБ <ИНВ>
84	І2> СРАБ
85	I2>> ИО <ИНВ>
86	I2>> ИО
87	I2>> СРАБ <ИНВ>
88	I2>> СРАБ
89	10> ИО <ИНВ>
90	10> ИО
91	I0> СРАБ <ИНВ>
92	10> СРАБ
93	10>> ИО <ИНВ>
94	ON <<0I
95	10>> СРАБ <ИНВ>
96	10>> СРАБ

Код	Тип сигнала
97	In> иО <инв>
98	In> NO
99	In> CPA5 < UHB>
100	In> CPAB
101	In>> NO <nhb></nhb>
102	In>> NO THIBS
103	In>> CPAБ <ИНВ>
104	In>> CPAB
105	Ir> NO <nhb></nhb>
106	Ir> NO
107	Ir> CPAE <uhb></uhb>
108	Ir> CPAB
109	12/I1> ИО <ИНВ>
110	12/11> ИО <ИПВ>
111	12/11> ИО 12/11>CPAБ <ИНВ>
112	12/11>CPA6 <vinb></vinb>
113	F> UO <uhb></uhb>
114	F> ИО 11/103</td
115	F> CPAE <nhb></nhb>
116	F> CPAB (VIIID)
117	F>> UO <uhb></uhb>
118	F>> ИО «ИПВ»
119	F>> CPA5 <vhb></vhb>
120	F>> CPA6
121	F< ИО <ИНВ>
122	F< ИО
123	F< CPAБ <ИНВ>
124	F< CPAБ
125	F<< ИО <ИНВ>
126	F<< ИО
127	F<< CPAБ <ИНВ>
128	F<< CPAБ
129	U> NO <nhb></nhb>
130	U> NO
131	U> CPAБ <ИНВ>
132	U> CPAБ
133	U>> NO <nhb></nhb>
134	U>> NO
135	U>> СРАБ <ИНВ>
136	U>> СРАБ
137	U< NO <nhb></nhb>
138	U< NO
139	U< CPAБ <ИНВ>
140	U< CPАБ
141	U<< NO <nhb></nhb>
142	U<< NO
	L

Код	Тип сигнала
143	U<< СРАБ <ИНВ>
144	U<< CPAБ
145	U2> ИО <ИНВ>
146	U2> ИО
147	U2> CPAБ <ИНВ>
148	U2> CPAБ
149	U2>> ИО <ИНВ>
150	U2>> ИО
151	U2>>СРАБ <ИНВ>
152	U2>> СРАБ
153	U0> ИО <ИНВ>
154	U0> NO
155	U0> CPAБ <ИНВ>
156	U0> CPAБ
157	U0>> NO <nhb></nhb>
158	U0>> NO
159	U0>>CPAБ <ИНВ>
160	U0>> СРАБ

Таблица 3.3 – Сигналы блокировок защит и автоматики

Код		Тип сигнала
0	HET	
1	Д1	<ИНВ>
2	Д1	
3 4	Д2	<ИНВ>
	Д2	
5	Д3	<ИНВ>
6	Д3	
7	Д4	<ИНВ>
8	Д4	
9	Д5	<ИНВ>
10	Д5	
11	Д6	<ИНВ>
12	Д6	
13	Д7	<ИНВ>
14	Д7	
15	Д8	<ИНВ>
16	Д8	
17	Д9	<ИНВ>
18	Д9	
19	Д10	<ИНВ>
20	Д10	
21	Д11	<ИНВ>
22	Д11	
23	Д12	<ИНВ>
24	Д12	
25	Д13	<ИНВ>
26	Д13	
27	Д14	<ИHB>
28	Д14	
29	Д15	<ИНВ>
30	Д15	
31	Д16	<ИНВ>
32	Д16	

Код	Т	ип сигнала
33	Л1	<nhb></nhb>
34	Л1	
35	Л2	<ИНВ>
36	Л2	
37	Л3	<ИНВ>
38	Л3	
39	Л4	<ИНВ>
40	Л4	
41	Л5	<ИНВ>
42	Л5	
43	Л6	<ИНВ>
44	Л6	
45	Л7	<ИНВ>
46	Л7	
47	Л8	<ИНВ>
48	Л8	
49	ВЛС1	<ИНВ>
50	ВЛС1	
51	ВЛС2	<ΝHB>
52	ВЛС2	
53	ВЛС3	<ИНВ>
54	ВЛС3	
55	ВЛС4	<ИНВ>
56	ВЛС4	
57	ВЛС5	<ИНВ>
58	ВЛС5	
59	ВЛС6	<ИНВ>
60	ВЛС6	
61	ВЛС7	<ИНВ>
62	ВЛС7	
63	ВЛС8	<ИНВ>
64	ВЛС8	

Таблица 3.4 – Выходные сигналы реле и индикаторов

Код	Тип сигнала	Код	Тип сигнала	Код	Тип сигнала
0	HET	Код 52	Д10	104	I >> СРАБ
1	ОТКЛ. ВЫКЛ.<ИНВ>	53	Д11 <ИНВ>	105	I>>> NO <nhb></nhb>
2	ОТКЛ. ВЫКЛ.	54	Д11	106	1>>> NO
3	ВКЛ. ВЫКЛ.<ИНВ>	55	Д12 <ИНВ>	107	I>>>CPAБ<ИНВ>
4	ВКЛ. ВЫКЛ.	56	Д12 1105</td <td>107</td> <td>I>>> CPAB</td>	107	I>>> CPAB
5	НЕИСПР. <ИНВ>	57	Д13 <ИНВ>	109	I>>>> ИО <ИНВ>
6			•	110	1>>>> NO 11D
7	НЕИСПРАВНОСТЬ	58	Д13 Д14 <ИНВ>		
	FP. YCTABOK OCH.	59	• •	111	I>>>>CPAБ <ИНВ>
8	ГР. УСТАВОК РЕЗ. Вход К1 <ИНВ> (с версии ПО	60	Д14	112	I>>>> СРАБ
9	3.03)	61	Д15 <ИНВ>	113	I2> ИО <ИНВ>
10	Вход К1 (с версии ПО 3.03)	62	Д15	114	12> ИО
11	СИГНАЛ. <ИНВ>	63	Д16 <ИНВ>	115	I2> CPAБ <ИНВ>
12	СИГНАСИСАНТИЯ	64	Д16	116	I2> CPAB
13	ОТКЛЮЧЕНИЕ <ИНВ>	65	Л1 <ИНВ>	117	12>> ИО <ИНВ>
14	ОТКЛЮЧЕНИЕ	66	Л1	118	12>> ИО «ИПВ»
15	ЗЕМЛЯ <ИНВ>	67	Л2 <ИНВ>	119	12>> CPAБ <ИНВ>
16	ЗЕМЛЯ	68	Л2 ЧПВ	120	12>> СРАБ
17	АВР ВКЛ. <ИНВ>	69	Л3 <ИНВ>	121	10> ИО <ИНВ>
18	АВР ВКЛ.	70	Л3	122	10> NO <nub></nub>
19	АВР ОТКЛ. <ИНВ>	71	лз Л4 <ИНВ>	123	10> VIO
20	АВР ОТКЛ.	72	Л4	124	10> CPA5
21	АВР БЛОК. <ИНВ>	73	Л5 <ИНВ>	125	10>> ИО <ИНВ>
22	АВР БЛОК.	74	Л5	126	ON <<01
23	Вход К2 <ИНВ> (с версии ПО 3.03)	75	Л6 <ИНВ>	127	10>> СРАБ<ИНВ>
24	Вход К2 (с версии ПО 3.03)	76	Л6	128	10>> CPAБ
25	РАБОТА ЛЗШ <ИНВ>	77	Л7 <ИНВ>	129	In> NO <nhb></nhb>
26	РАБОТА ЛЗШ	78	Л7	130	In> NO (VIII)
27	РАБОТА УРОВ<ИНВ>	79	Л8 <ИНВ>	131	In> CPAБ <ИНВ>
28	РАБОТА УРОВ	80	Л8	132	In> CPAB (VIIIB)
29	ВКЛ. ПО АПВ <ИНВ>	81	ВЛС1 <ИНВ>	133	In>> NO <nhb></nhb>
30	ВКЛ. ПО АПВ	82	ВЛС1 ЧИПВ		In>> NO (VIIIB)
31	УСКОРЕНИЕ <ИНВ>	83	ВЛС2 <ИНВ>	134 135	In>>CPAБ <ИНВ>
32	УСКОРЕНИЕ <ИНЬ>	84	ВЛС2 ЧИНВ	136	In>> CPAB
33		85	ВЛС3 <ИНВ>	137	Ir> NO <nhb></nhb>
34		86	ВЛС3		II> NO <nub></nub>
35	Д1 Д2 <ИНВ>	87	ВЛС4 <ИНВ>	138 139	Ir> CPAБ <ИНВ>
	• •		ВЛС4 ЧИТВ		
36 37	Д2	88		140	Ir> CPAB
	Д3 <ИНВ>	89		141	12/11> NO <nhb></nhb>
38	ДЗ	90	ВЛС5	142	12/11> NO
39	Д4 <ИНВ>	91	ВЛС6 <ИНВ>	143	12/11> CPAE
40	Д4	92	ВЛС6	144	I2/I1> СРАБ
41	Д5 <ИНВ>	93	ВЛС7 <ИНВ>	145	F> ИО <ИНВ>
42	Д5	94	ВЛС7	146	F> NO
43	Д6 <ИНВ>	95	ВЛС8 <ИНВ>	147	F> CPAE
44	Д6	96	ВЛС8	148	F> CPAB
45	Д7 <ИНВ>	97	I > NO <nhb></nhb>	149	F>> ИО <ИНВ>
46	Д7	98	1> NO	150	F>> ИО
47	Д8 <ИНВ>	99	I > CPAБ <ИНВ>	151	F>> СРАБ <ИНВ>
48	Д8	100	1 > СРАБ	152	F>> CPA6
49	Д9 <ИНВ>	101	I >> ИО <ИНВ>	153	F< NO <nhb></nhb>
50	Д9	102	I>> NO	154	F< ИО
51	Д10 <ИНВ>	103	I >> СРАБ <ИНВ>	155	F< CPAБ <ИHB>

156	Код	Тип сигнала	Код	Тип сигнала	Код	Тип сигнала
157						
158					†	
159					1	
160			-			
161					1	
162			-		1	
163			-			
164			-			
165			-		1	
166			-			
167					1	•
168					1	
169			+			
170					1	
171			+			
172						
173						
174						·
175					†	
176					1	
177						
178			-			
179			-		1	•
180						
181			225		1	•
182		U2>> ИО <ИНВ>	226		275	•
184	182	U2>> ИО	227	ССЛ10 <ИНВ>	276	
185 UO> ИО < ИИВ> 230 ССЛ11 279 F<< возврат < ИНВ> 186 UO> ИО 231 ССЛ12 < ИНВ> 280 F<< возврат	183	U2>> СРАБ <ИНВ>	228	ССЛ10	277	F< возврат <ИНВ>
186 U0> ИО 231 ССЛ12 «ИНВ> 280 F<< возврат	184	U2>> СРАБ	229	ССЛ11 <ИНВ>	278	F< возврат
187 U0> CPAБ < ИНВ> 232 ССЛ12 188 U0> CPAБ 233 ССЛ13 < ИНВ> 189 U0>> ИО < ИИВ> 234 ССЛ13 190 U0>> ИО 235 ССЛ14 < ИНВ> 191 U0>> CPAБ < ИНВ> 236 ССЛ14 192 U0>> CPAБ 237 ССЛ15 < ИНВ> 193 B3 1 CPAБ 240 ССЛ15 < ИНВ> 194 B3 1 CPAБ 239 ССЛ16 < ИНВ> 195 B3 2 CPAБ 240 ССЛ16 < ИНВ> 196 B3 2 CPAБ 241 ССЛ17 < ИНВ> 197 B3 3 CPAБ 242 ССЛ17 198 B3 3 CPAБ 243 ССЛ18 200 B3 4 CPAБ 244 ССЛ18 200 B3 4 CPAБ 245 ССЛ19 246 ССЛ19 247 ССЛ20 <	185	U0> NO <nhb></nhb>	230	ССЛ11	279	F<< возврат <ИНВ>
188 U0> CPAБ 233 CCЛ13 < VHB> 189 U0>> ИО < ИНВ> 234 CCЛ13 190 U0>> ИО 235 CCЛ14 < VHB> 191 U0>> CPAБ < ИНВ> 236 CCЛ14 192 U0>> CPAБ 237 CCЛ15 < VHB> 193 B3 1 CPAБ 238 CCЛ15 194 B3 1 CPAБ 239 CCЛ16 < VHB> 195 B3 2 CPAБ 240 CCЛ16 196 B3 2 CPAБ 241 CCЛ17 < VHB> 197 B3 3 CPAБ 242 CCЛ17 198 B3 3 CPAБ 243 CCЛ18 < VHB> 199 B3 4 CPAБ 244 CCЛ18 200 B3 4 CPAБ 245 CCЛ19 < VHB> 246 CCЛ19 247 CCЛ20 < VHB> 248 CCЛ20	186	U0> NO	231	ССЛ12 <ИНВ>	280	F<< возврат
189 U0>> ИО 234 ССЛ13 190 U0>> ИО 235 ССЛ14 191 U0>> СРАБ 236 ССЛ14 192 U0>> СРАБ 237 ССЛ15 193 B3 1 СРАБ 240 ССЛ15 194 B3 1 СРАБ 239 ССЛ16 195 B3 2 СРАБ 240 ССЛ16 196 B3 2 СРАБ 241 ССЛ17 197 B3 3 СРАБ 241 ССЛ17 198 B3 3 СРАБ 243 ССЛ18 199 B3 4 СРАБ 244 ССЛ18 200 B3 4 СРАБ 245 ССЛ19 246 ССЛ19 247 ССЛ20 248 ССЛ20	187	U0> СРАБ <ИНВ>	232	ССЛ12		
190 U0>> ИО 235 ССЛ14 236 ССЛ14 191 U0>> СРАБ 236 ССЛ14 236 ССЛ14	188	U0> СРАБ	233	ССЛ13 <ИНВ>		
191 U0>> CPAБ < ИНВ> 236 ССЛ14 192 U0>> CPAБ 237 ССЛ15 < ИНВ> 193 B3 1 CPAБ < ИНВ> 238 ССЛ15 194 B3 1 CPAБ 239 ССЛ16 < ИНВ> 195 B3 2 CPAБ < ИНВ> 240 ССЛ16 196 B3 2 CPAБ 241 ССЛ17 < ИНВ> 197 B3 3 CPAБ 242 ССЛ17 198 B3 3 CPAБ 243 ССЛ18 < ИНВ> 199 B3 4 CPAБ ИНВ> 244 ССЛ18 200 B3 4 CPAБ 245 ССЛ19 < ИНВ> 246 ССЛ19 247 ССЛ20 < ИНВ> 248 ССЛ20	189	U0>> ИО <ИНВ>	234	ССЛ13		
192 U0>> CPAБ 237 CCЛ15 <uhb> 193 B3 1 CPAБ 238 CCЛ15 194 B3 1 CPAБ 239 CCЛ16 <uhb> 195 B3 2 CPAБ <uhb> 240 CCЛ16 196 B3 2 CPAБ 241 CCЛ17 <uhb> 197 B3 3 CPAБ 242 CCЛ17 198 B3 3 CPAБ 243 CCЛ18 <uhb> 199 B3 4 CPAБ <uhb> 244 CCЛ18 200 B3 4 CPAБ 245 CCЛ19 <uhb> 246 CCЛ19 <uhb> 247 CCЛ20 <uhb> 248 CCЛ20</uhb></uhb></uhb></uhb></uhb></uhb></uhb></uhb></uhb>	190	U0>> NO	235	ССЛ14 <ИНВ>		
193 B3 1 СРАБ 238 ССЛ15 194 B3 1 СРАБ 239 ССЛ16 <a <="" href="#page-249" td=""><td>191</td><td>U0>> СРАБ <ИНВ></td><td>236</td><td>ССЛ14</td><td></td><td></td>	191	U0>> СРАБ <ИНВ>	236	ССЛ14		
194 B3 1 CPAБ 239 CCЛ16 <uhb> 195 B3 2 CPAБ 240 CCЛ16 196 B3 2 CPAБ 241 CCЛ17 <uhb> 197 B3 3 CPAБ 242 CCЛ17 198 B3 3 CPAБ 243 CCЛ18 <uhb> 199 B3 4 CPAБ 244 CCЛ18 200 B3 4 CPAБ 245 CCЛ19 <uhb> 246 CCЛ19 247 CCЛ20 <uhb> 248 CCЛ20</uhb></uhb></uhb></uhb></uhb>	192	U0>> СРАБ	237	ССЛ15 <ИНВ>		
195 B3 2 CPAБ 240 CCЛ16 196 B3 2 CPAБ 241 CCЛ17 <uhbs></uhbs> «ИНВ» 197 B3 3 CPAБ 242 CCЛ17 198 B3 3 CPAБ 243 CCЛ18 <uhbs></uhbs> «ИНВ» 199 B3 4 CPAБ <uhbs></uhbs> 244 CCЛ18 200 B3 4 CPAБ 245 CCЛ19 <uhbs></uhbs> «ИНВ» 246 CCЛ19 <uhbs></uhbs> 247 CCЛ20 <uhbs></uhbs>«ИНВ» 248 CCЛ20 <uhbs></uhbs>«ИНВ»	193	ВЗ 1 СРАБ <ИНВ>	238	ССЛ15		
196 B3 2 СРАБ 241 ССЛ17 < ИНВ> 197 B3 3 СРАБ 242 ССЛ17 198 B3 3 СРАБ 243 ССЛ18 < ИНВ> 199 B3 4 СРАБ 244 ССЛ18 200 B3 4 СРАБ 245 ССЛ19 < ИНВ> 246 ССЛ19 247 ССЛ20 < ИНВ> 248 ССЛ20	194	ВЗ 1 СРАБ	239	ССЛ16 <ИНВ>]	
197 B3 3 CPAБ 242 CCЛ17 198 B3 3 CPAБ 243 CCЛ18 <ИНВ> 199 B3 4 CPAБ 244 CCЛ18 200 B3 4 CPAБ 245 CCЛ19 <ИНВ> 246 ССЛ19 247 ССЛ20 УИНВ> 248 ССЛ20	195	ВЗ 2 СРАБ <ИНВ>	240	ССЛ16		
198 B3 3 СРАБ 243 ССЛ18 < ИНВ> 199 B3 4 СРАБ 244 ССЛ18 200 B3 4 СРАБ 245 ССЛ19 < ИНВ> 246 ССЛ19 247 ССЛ20 < ИНВ> 248 ССЛ20	196	ВЗ 2 СРАБ	241	ССЛ17 <ИНВ>		
199 ВЗ 4 СРАБ 244	197	ВЗЗ СРАБ <ИНВ>	242	ССЛ17		
200 ВЗ 4 СРАБ 245 ССЛ19 <ИНВ> 246 ССЛ19 247 ССЛ20 <ИНВ> 248 ССЛ20	198	ВЗЗ СРАБ	243	ССЛ18 <ИНВ>]	
246 ССЛ19 247 ССЛ20 <ИНВ> 248 ССЛ20	199	ВЗ 4 СРАБ <ИНВ>	244	ССЛ18]	
247 ССЛ20 <ИНВ> 248 ССЛ20	200	ВЗ 4 СРАБ	245	ССЛ19 <ИHB>]	
248 ССЛ20			246	ССЛ19]	
			247	ССЛ20 <ИНВ>]	
249 ССЛ21 <ИНВ>			248	ССЛ20]	
			249	ССЛ21 <ИНВ>]	

Таблица 3.5 – Сигналы МР741

	<u>лица 3.5 – Сигналы МР74</u>	
Nº	Тип сигнала	Назначение
0	HET	Реле не используется
1	ОТКЛ. ВКЛ.<ИНВ>	Сигнал отключить выключатель инверсный
2	ОТКЛ. ВКЛ.	Сигнал отключить выключатель
3	ВКЛ. ВЫКЛ.<ИНВ>	Сигнал включить выключатель инверсный
4	ВКЛ. ВЫКЛ.	Сигнал включить выключатель
5	НЕИСПР. <ИНВ>	Сигнал неисправность инверсный
6	НЕИСПРАВНОСТЬ	Сигнал неисправность
7	ГР. УСТАВОК ОСН.	В работе основная группа уставок
8	ГР. УСТАВОК РЕЗ.	В работе резервная группа уставок
9	Вход К1 <ИНВ> (с версии ПО 3.03)	Вход К1 инверсный
10	Вход К1 (с версии ПО 3.03)	Вход К1
11	СИГНАЛ. <ИНВ>	Сигнализация (запись в журнале аварий) инверсный
12	СИГНАЛИЗАЦИЯ	Сигнализация (запись в журнале аварий)
13	ОТКЛЮЧЕНИЕ <ИНВ>	Аварийное отключение (запись в журнале аварий) инверсный
14	ОТКЛЮЧЕНИЕ	Аварийное отключение (запись в журнале аварий)
15	ЗЕМЛЯ <ИНВ>	Земля (запись в журнале аварий) инверсный
16	ЗЕМЛЯ	Земля (запись в журнале аварий)
17	АВР ВКЛ. <ИНВ>	Инверсный сигнал включения резерва по АВР
18	АВР ВКЛ.	Сигнал включения резерва по АВР
19	АВР ОТКЛ. <ИНВ>	Инверсный сигнал отключения резерва по АВР
20	АВР ОТКЛ.	Сигнал отключения резерва по АВР
21	АВР БЛОК. <ИНВ>	Инверсный сигнал блокировки АВР
22	АВР БЛОК.	Сигнал блокировки АВР
	Вход К2 <ИНВ> (с версии	
23	ПО 3.03)	Вход К1 инверсный
24	Вход К2 (с версии ПО 3.03)	Вход К1
25	РАБОТА ЛЗШ <ИНВ>	Инверсный сигнал срабатывания ЛЗШ
26	РАБОТА ЛЗШ	Сигнал срабатывания ЛЗШ
27	РАБОТА УРОВ <ИНВ>	Инверсный сигнал работы УРОВ
28	РАБОТА УРОВ	Сигнал работы УРОВ
29	ВКЛ. ПО АПВ <ИНВ>	Инверсный сигнал включения выключателя по АПВ
30	ВКЛ. ПО АПВ	Сигнал включения выключателя по АПВ
31	УСКОРЕНИЕ <ИНВ>	Инверсный сигнал режима ускорения
32	УСКОРЕНИЕ	Сигнал режима ускорения
33	Д1 <ИHB>	Входной дискретный сигнал Д1 инверсный
34	Д1	Входной дискретный сигнал Д1
35	Д2 <ИНВ>	Входной дискретный сигнал Д2 инверсный
36	Д2	Входной дискретный сигнал Д2
37	Д3 <ИHB>	Входной дискретный сигнал Д3 инверсный
38	Д3	Входной дискретный сигнал Д3
39	Д4 <ИHB>	Входной дискретный сигнал Д4 инверсный
40	Д4	Входной дискретный сигнал Д4
41	Д5 <ИНВ>	Входной дискретный сигнал Д5 инверсный
42	Д5	Входной дискретный сигнал Д5
43	Д6 <ИНВ>	Входной дискретный сигнал Д6 инверсный
44	Д6	Входной дискретный сигнал Д6
45	Д7 <ИHB>	Входной дискретный сигнал Д7 инверсный
46	Д7	Входной дискретный сигнал Д7
47	Д8 <ИНВ>	Входной дискретный сигнал Д8 инверсный
48	Д8	Входной дискретный сигнал Д8
49	Д9 <ИНВ>	Входной дискретный сигнал Д9 инверсный
50	Д9	Входной дискретный сигнал Д9
51	Д10 <ИНВ>	Входной дискретный сигнал Д10 инверсный
52	Д10	Входной дискретный сигнал Д10
53	Д11 <ИНВ>	Входной дискретный сигнал Д11 инверсный
54	Д11	Входной дискретный сигнал Д11
55	Д12 <ИНВ>	Входной дискретный сигнал Д12 инверсный
56	Д12 - ГЛПВ-	Входной дискретный сигнал Д12
57	Д13 <ИНВ>	Входной дискретный сигнал Д13 инверсный
58	Д13 \ипь>	Входной дискретный сигнал д 13 инверсный Входной дискретный сигнал Д13
59	Д13 Д14	Входной дискретный сигнал д 13
JJ	I H I YII IU'	руодной Чисиретпри сипал Нт. ипрефорри

Про	должение таблицы 3.5	
60	Д14	Входной дискретный сигнал Д14
61	Д15 <ИНВ>	Входной дискретный сигнал Д15 инверсный
62	Д15	Входной дискретный сигнал Д15
63	Д16 <ИНВ>	Входной дискретный сигнал Д16 инверсный
64	Д16	Входной дискретный сигнал Д16
65	Л1 <ИНВ>	Входной логический сигнал Л1 инверсный
66	Л1	Входной логический сигнал Л1
67	Л2 <ИНВ>	Входной логический сигнал Л2 инверсный
68	Л2	Входной логический сигнал Л2
69	Л3 <ИНВ>	Входной логический сигнал Л3 инверсный
70	Л3	Входной логический сигнал Л3
71	Л4 <ИНВ>	Входной логический сигнал Л4 инверсный
72	Л4	Входной логический сигнал Л4
73	Л5 <ИНВ>	Входной логический сигнал Л5 инверсный
74	Л5	Входной логический сигнал Л5
75	Л6 <ИНВ>	Входной логический сигнал Л6 инверсный
76	Л6	Входной логический сигнал Л6
77	Л7 <ИНВ>	Входной логический сигнал Л7 инверсный
78	Л7	Входной логический сигнал Л7
79	Л8 <ИНВ>	Входной логический сигнал Л8 инверсный
80	Л8	Входной логический сигнал Л8
	I> ИО <ИНВ>	инверсный логический сигнал, являющийся повторителем
81		срабатывания измерительного органа первой ступени защиты
		от превышения по току
	I> NO	логический сигнал, являющийся повторителем срабатывания
82		измерительного органа первой ступени защиты от превыше-
		ния по току
	L. ODAE HALIDA	инверсный логический сигнал, являющийся повторителем
83	I> СРАБ <ИНВ>	срабатывания первой ступени защиты от превышения по току
0.4	I > СРАБ	логический сигнал, являющийся повторителем срабатывания
84	I > CPAB	первой ступени защиты от превышения по току
	I>> ИО <ИНВ>	инверсный логический сигнал, являющийся повторителем
85		срабатывания измерительного органа второй ступени защиты
		от превышения по току
	I>> NO	логический сигнал, являющийся повторителем срабатывания
86		измерительного органа второй ступени защиты от превыше-
		ния по току
87	I >> СРАБ <ИНВ>	инверсный логический сигнал, являющийся повторителем
07		срабатывания второй ступени защиты от превышения по току
88	I>> СРАБ	логический сигнал, являющийся повторителем срабатывания
00	I OFAD	второй ступени защиты от превышения по току
	I>>> ИО <ИНВ>	инверсный логический сигнал, являющийся повторителем
89		срабатывания измерительного органа третьей ступени защиты
		от превышения по току
	I>>> NO	логический сигнал, являющийся повторителем срабатывания
90		измерительного органа третьей ступени защиты от превыше-
		ния по току
91	I>>> СРАБ <ИНВ>	инверсный логический сигнал, являющийся повторителем
<u> </u>	I CFAD NIND	срабатывания третьей ступени защиты от превышения по току
92	I>>> СРАБ	логический сигнал, являющийся повторителем срабатывания
J2	ITT OI AD	третьей ступени защиты от превышения по току
	I >>>> ИО <ИНВ>	инверсный логический сигнал, являющийся повторителем
93		срабатывания измерительного органа четвертой ступени за-
		щиты от превышения по току
۱	1,,,,,,,,,,	логический сигнал, являющийся повторителем срабатывания
94	I >>>> NO	измерительного органа четвертой ступени защиты от превы-
1		шения по току

Приложение к договору №	OT « »	20 г.

Карта заказа на реле микропроцессорное MP741 защиты и автоматики ввода, отходящей линии, секционного выключателя со свободно программируемой логикой

Заказчик	
Тип МР:	Вариант исполнения интерфейса: 1 — Один порт RS-485; 2 — Два порта RS-485; 3 — Два оптических порта типа ST; 4 — Два порта Ethernet типа RJ-45 Номинальное напряжение питания и дискретных входов 110 — Uн ≈110 B; 230 — Uн ~230 B / =220 B; 24 — U _H = 24 B; — иное напряжение Модель: 741 — свободно программируемая логика, линия, ввод, секционный выключатель Серия: МР — реле универсальные микропроцессорные защиты энергооборудования
Количество изделий:	шт.
Руководство по экспл	уатации: шт.
ЗАКАЗЧИК:	изготовитель:
«» 20	г.
М.П.	М.П.